Energy conversion devices require the parallel functionality of a variety of components for efficient operation. We present a versatile microfluidic test-bed for facile testing of integrated catalysis and mass transport components for energy conversion via water electrolysis. This system can be readily extended to solar-fuels generators and fuel-cell devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp51302e | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Grundlagen von Energiematerialien, Institut für Physik, Technische Universität Ilmenau, 98693 Ilmenau, Germany.
To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.
View Article and Find Full Text PDFAnal Chem
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
Hydroquinone (HQ) and copper ions (Cu) are categorized as environmental pollutants that are severely limited in water. Designing a selective assay for discriminating HQ from its two isomers and the convenient determination of Cu is of great importance. Herein, a Tb-based metal-organic framework (Tb-MOF) and HQ are assembled innovatively into a ratiometric fluorescence nanoprobe to selectively distinguish HQ and subsequent quantitative visual detection of Cu.
View Article and Find Full Text PDFSoft Matter
January 2025
Center of Excellence in Energy Conversion (CEEC), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
Microfluidic chips are powerful tools for investigating numerous variables including chemical and physical parameters on protein aggregation. This study investigated the aggregation of bovine serum albumin (BSA) in two different systems: a vial-based static system and a microfluidic chip-based dynamic system in which BSA aggregation was induced successfully. BSA aggregation induced in a microfluidic chip on a timescale of seconds enabled a dynamic investigation of the forces driving the aggregation process.
View Article and Find Full Text PDFInorg Chem
January 2025
University of Göttingen, Institute of Inorganic Chemistry, Tammannstrasse 4, D-37077 Göttingen, Germany.
Alkyl nickel intermediates relevant to catalytic processes often feature agostic stabilization, but relatively little is known about the situation in oligonickel systems. The dinickel(I) complex K[LNi], which is based on a compartmental pyrazolato-bridged ligand L with two β-diketiminato chelate arms, or its masked version, the dihydride complex [KL(Ni-H)] that readily releases H, oxidatively add methyl tosylate to give diamagnetic [LNi(CH)] () with (Ni···Ni) ≈ 3.7 Å.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!