Facilitating the use of online visual feedback: advance information and the inter-trial interval?

Motor Control

School of Kinesiology and School of Health and Exercise Sciences, University of British Columbia, Vancouver, BC, Canada.

Published: April 2013

Cheng et al. (2008) showed that when goal-directed reaching movements are performed with a 2.5 s inter-trial interval (ITI) under a randomized visual feedback schedule, individuals use online visual information on trial n to perform efficient online corrections on trial n + 1 (i.e., "reminiscence" effect). These results persisted even when participants were given knowledge of the up-coming vision condition. In this study, the ITI was extended to 5 s in an attempt to negate any effects of the preceding trial. Results from this study revealed that trials with vision were always more accurate than trials performed without vision, suggesting that individuals relied significantly on online information. Furthermore, aiming precision improved when participants knew the vision condition before each trial. It is thus suggested that the reminiscence effects are not longer evident with a 5 s ITI, which in turn allows prior knowledge of visual feedback to influence the use of online vision.

Download full-text PDF

Source
http://dx.doi.org/10.1123/mcj.17.2.111DOI Listing

Publication Analysis

Top Keywords

visual feedback
12
online visual
8
vision condition
8
vision
5
facilitating online
4
visual
4
feedback advance
4
advance inter-trial
4
inter-trial interval?
4
interval? cheng
4

Similar Publications

Background: Different modes of motor acquisition, including motor execution (ME), motor imagery (MI), action observation (AO), and mirror visual feedback (MVF), are often used when learning new motor behavior and in clinical rehabilitation.

Purpose: The aim of this study was to investigate differences in brain activation during different motor acquisition modes among healthy young adults.

Methods: This cross-sectional study recruited 29 healthy young adults.

View Article and Find Full Text PDF

Evaluating interface pressure in a lower-limb prosthetic socket: Comparison of FEM and experimental measurements on a roll-over simulator.

J Biomech

January 2025

Arts et Métiers Institute of Technology, Université Sorbonne Paris Nord, IBHGC - Institut de Biomécanique Humaine Georges Charpak, HESAM Université, 151 boulevard de l'Hôpital, 75013 Paris, France. Electronic address:

Improper socket fitting in lower-limb prostheses can lead to significant complications, including pain, skin lesions, and pressure ulcers. Current suspension and socket design practices rely predominantly on visual inspection of the residual limb and patient feedback. Monitoring stress distribution at the residual limb/socket interface offers a more objective approach.

View Article and Find Full Text PDF

DICCR: Double-gated intervention and confounder causal reasoning for vision-language navigation.

Neural Netw

December 2024

School of Computer and Electronic Information, Guangxi University, University Road, Nanning, 530004, Guangxi, China. Electronic address:

Vision-language navigation (VLN) is a challenging task that requires agents to capture the correlation between different modalities from redundant information according to instructions, and then make sequential decisions on visual scenes and text instructions in the action space. Recent research has focused on extracting visual features and enhancing text knowledge, ignoring the potential bias in multi-modal data and the problem of spurious correlations between vision and text. Therefore, this paper studies the relationship structure between multi-modal data from the perspective of causality and weakens the potential correlation between different modalities through cross-modal causality reasoning.

View Article and Find Full Text PDF

Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!