Creatine transport has been assigned to creatine transporter 1 (CRT1), encoded by mental retardation associated SLC6A8. Here, we identified a second creatine transporter (CRT2) known as monocarboxylate transporter 12 (MCT12), encoded by the cataract and glucosuria associated gene SLC16A12. A non-synonymous alteration in MCT12 (p.G407S) found in a patient with age-related cataract (ARC) leads to a significant reduction of creatine transport. Furthermore, Slc16a12 knockout (KO) rats have elevated creatine levels in urine. Transport activity and expression characteristics of the two creatine transporters are distinct. CRT2 (MCT12)-mediated uptake of creatine was not sensitive to sodium and chloride ions or creatine biosynthesis precursors, breakdown product creatinine or creatine phosphate. Increasing pH correlated with increased creatine uptake. Michaelis-Menten kinetics yielded a Vmax of 838.8 pmol/h/oocyte and a Km of 567.4 µm. Relative expression in various human tissues supports the distinct mutation-associated phenotypes of the two transporters. SLC6A8 was predominantly found in brain, heart and muscle, while SLC16A12 was more abundant in kidney and retina. In the lens, the two transcripts were found at comparable levels. We discuss the distinct, but possibly synergistic functions of the two creatine transporters. Our findings infer potential preventive power of creatine supplementation against the most prominent age-related vision impaired condition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3723308PMC
http://dx.doi.org/10.1093/hmg/ddt175DOI Listing

Publication Analysis

Top Keywords

creatine
13
creatine transporter
12
cataract glucosuria
8
glucosuria associated
8
monocarboxylate transporter
8
transporter mct12
8
creatine transport
8
creatine transporters
8
transporter
5
associated monocarboxylate
4

Similar Publications

Vacuolar myopathy with monoclonal gammopathy and stiffness (VAMMGAS).

Eur J Neurol

January 2025

Groupe Hospitalier Pitié-Salpêtrière, Institut de Myologie, AP-HP, Sorbonne Université, Paris, France.

Background: Monoclonal gammopathy (MG) has been reported in association with numerous neurological disorders but the spectrum of MG-associated myopathies remains poorly described.

Objective: To report a newly acquired myopathy associated with MG.

Methods: Three adult patients with the same phenotype from two French referral centers were prospectively analyzed.

View Article and Find Full Text PDF

Objective: Early reports have indicated that the Omicron variant of coronavirus disease 2019 (COVID-19) may be associated with low mortality. However, the mortality rate of critical patients in Taiwan with COVID-19 caused by different variants has not been well described.

Methods: This retrospective cohort study was conducted at the Linkou Branch of Chang Gung Memorial Hospital, Taiwan, from April 2020 to September 2022.

View Article and Find Full Text PDF

Background: Heat stroke (HS), a potentially fatal heat-related illness, is often accompanied by disseminated intravascular coagulation (DIC) early, resulting in a poorer prognosis. Unfortunately, diagnosis by current DIC scores is often too late to identify DIC. This study aims to investigate the predictors and predictive model of DIC in HS to identify DIC early.

View Article and Find Full Text PDF

Background: The role of cyclic guanosine 3',5'-monophosphate (cGMP) after acute myocardial infarction (AMI) is not well understood despite its significance as a second messenger of natriuretic peptides (NPs) in cardiovascular disease. We investigated the association between the NP-cGMP cascade and left ventricular reverse remodelling (LVRR) in anterior AMI.

Methods: 67 patients with their first anterior AMI (median age, 64 years; male, 76%) underwent prospective evaluation of plasma concentrations of the molecular forms of A-type and B-type natriuretic peptide (BNP) and cGMP from immediately after primary percutaneous coronary intervention (PPCI) to 10 months post-AMI.

View Article and Find Full Text PDF

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!