In dense stands of plants, such as agricultural monocultures, plants are exposed simultaneously to competition for light and other stresses such as pathogen infection. Here, we show that both salicylic acid (SA)-dependent and jasmonic acid (JA)-dependent disease resistance is inhibited by a simultaneously reduced red:far-red light ratio (R:FR), the early warning signal for plant competition. Conversely, SA- and JA-dependent induced defences did not affect shade-avoidance responses to low R:FR. Reduced pathogen resistance by low R:FR was accompanied by a strong reduction in the regulation of JA- and SA-responsive genes. The severe inhibition of SA-responsive transcription in low R:FR appeared to be brought about by the repression of SA-inducible kinases. Phosphorylation of the SA-responsive transcription co-activator NPR1, which is required for full induction of SA-responsive transcription, was indeed reduced and may thus play a role in the suppression of SA-mediated defences by low R:FR-mediated phytochrome inactivation. Our results indicate that foraging for light through the shade-avoidance response is prioritised over plant immune responses when plants are simultaneously challenged with competition and pathogen attack.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.12203 | DOI Listing |
Environ Geochem Health
December 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing, 100875, China.
Around 2.6 billion people are at risk of tooth carries and fluorosis worldwide. Quetta is the worst affected district in Balochistan plateau.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs, Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
The Leaf Area Index (LAI) is a crucial parameter for evaluating crop growth and informing fertilization management in agricultural fields. Compared to traditional methods, UAV-based hyperspectral imaging technology offers significant advantages for non-destructive, rapid monitoring of crop LAI by simultaneously capturing both spectral information and two-dimensional images of the crop canopy, which reflect changes in its structure. While numerous studies have demonstrated that various texture features, such as the Gray-Level Co-occurrence Matrix (GLCM), can be used independently or in combination with crop canopy spectral data for LAI estimation, limited research exists on the application of Haralick textures for evaluating crop LAI across multiple growth stages.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Institute for Plant Molecular and Cell Biology (IBMCP), CSIC-Universitat Politècnica de València, 46022 Valencia, Spain.
Plants of several species, including crops, change their volatilome when exposed to a low ratio of red to far-red light (low R/FR) that informs about the presence of nearby plants (i.e., proximity shade).
View Article and Find Full Text PDFBull Math Biol
November 2024
Theoretical Bioinformatics, ICube, C.N.R.S., University of Strasbourg, 300 Boulevard Sébastien Brant, 67400, Illkirch, France.
Sci Rep
November 2024
Department of Computer Sciences, Faculty of Mathematics, Statistics and Computer Science, Semnan University, P.O. Box: 35195-363, Semnan, Iran.
Density functional theory (DFT) calculations are widely used for material property prediction, but their computational cost can hinder the discovery of novel perovskites. This work explores machine learning (ML) as a faster alternative for predicting band gaps in complex perovskites, focusing on low-symmetry double and layered structures. We employ Support Vector Regression (SVR), Random Forest Regression (RFR), Gradient Boosting Regression (GBR), and Extreme Gradient Boosting (XGBoost) to predict both direct and indirect band gaps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!