Background: This study proposed a fast and fully automatic calibration system to suppress the dark banding artifacts in balanced steady-state free precession (bSSFP) cardiovascular magnetic resonance (CMR) at 3.0 T.

Methods: Twenty-one healthy volunteers (18 men, 3 women; mean age 24.9 years) participated in this study after providing institutionally approved consent. The optimal frequency was obtained using sweep scans of transition-band low flip-angle bSSFP (bSSFP-L), performed with three conditions: breath-hold plus electrocardiography (ECG) triggering (BH + ECG), breath-hold only (BH), and free breathing (FB). A real-time feedback system was implemented to allow the performing of bSSFP-L calibration scanning and conventional cine bSSFP within one breath-hold. For each scan condition, the optimal phase was estimated using 20-point and 10-point spline fitting.

Results: Linear regression analysis indicated high correlation between the optimal phases obtained using BH and FB and those obtained using BH + ECG (R2 = 0.91 to 0.98, n = 21). The optimal phases obtained using 10-point datasets showed high correlation with the 20-point BH + ECG datasets (R2 = 0.92 to 0.99, n = 21); although the within-subject coefficient of variation (wsCV) was larger using 10-point fitting. The variation of repeated measurements was largest with FB acquisition and smallest with BH + ECG acquisition. The optimal frequency obtained by offline calculation and by real-time feedback calibration significantly reduced dark-band artifacts in cine bSSFP images (both p < .01).

Conclusions: The proposed real-time feedback calibration method for bSSFP imaging is rapid and fully automatic. This method could greatly reduce dark-band artifacts in bSSFP images and facilitate clinical CMR at 3.0 T.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3651374PMC
http://dx.doi.org/10.1186/1532-429X-15-32DOI Listing

Publication Analysis

Top Keywords

fast fully
8
fully automatic
8
automatic calibration
8
balanced steady-state
8
steady-state free
8
free precession
8
cardiovascular magnetic
8
magnetic resonance
8
optimal frequency
8
real-time feedback
8

Similar Publications

The remarkable efficiency with which enzymes catalyze small-molecule reactions has driven their widespread application in organic chemistry. Here, we employ automated fast-flow solid-phase synthesis to access catalytically active full-length enzymes without restrictions on the number and structure of noncanonical amino acids incorporated. We demonstrate the total syntheses of iron-dependent myoglobin (BsMb) and sperm whale myoglobin (SwMb).

View Article and Find Full Text PDF

Natural deep eutectic solvent-based liquid phase microextraction in a 3D-Printed millifluidic flow cell for the on-line determination of thiabendazole in juice samples.

Anal Chim Acta

February 2025

Departamento de Medio Ambiente y Agronomía, INIA-CSIC, Carretera de A Coruña km. 7.5, 28040, Madrid, Spain. Electronic address:

Background: At present, 3D printing technology is becoming increasingly popular in analytical chemistry because it enables the rapid and cost-effective manufacture of sample preparation devices, particularly in flow-based operation, opening up new opportunities for the development of automated analytical methods. In parallel, the use of miniaturized methods and sustainable solvents in sample preparation is highly recommended. Accordingly, in this work, a 3D-printed millifluidic device was designed and used for the on-line natural deep eutectic solvent (NADES)-based liquid phase microextraction (LPME) coupled to a spectrofluorometer for, as a proof of concept, the determination of thiabendazole (TBZ) in fruit juice samples.

View Article and Find Full Text PDF

Introduction: Older age significantly increases risk for cognitive decline. A growing number of older adults (≥ 65 years) experience cognitive decline that compromises immediate and/or long-term health. Interventions to mitigate cognitive decline are greatly needed.

View Article and Find Full Text PDF

Omnidirectional Wireless Power Transfer for Millimetric Magnetoelectric Biomedical Implants.

IEEE J Solid-State Circuits

November 2024

Department of Electrical and Computer Engineering, Rice University, Houston TX, 77005, USA.

Miniature bioelectronic implants promise revolutionary therapies for cardiovascular and neurological disorders. Wireless power transfer (WPT) is a significant method for miniaturization, eliminating the need for bulky batteries in today's devices. Despite successful demonstrations of millimetric battery-free implants in animal models, the robustness and efficiency of WPT are known to degrade significantly under misalignment incurred by body movements, respiration, heart beating, and limited control of implant orientation during surgery.

View Article and Find Full Text PDF

Myocardial microcirculation in athletes and its relationship with cardiac remodeling (CR) and myocardial fibrosis (MF) are not fully understood. We prospectively enrolled 174 athletes and 54 healthy sedentary controls for intravoxel incoherent motion (IVIM) diffusion-weighted imaging of cardiac magnetic resonance imaging. Athletes exhibited significantly lower fast apparent diffusion coefficient (ADC) and perfusion fraction (f) in 16 myocardial segments and each blood supply area compared to controls ( < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!