A review on the role of quinones in renal disorders.

Springerplus

Department of Medicine, Nassau University Medical Center, 2201 Hempstead Turnpike, East Meadow, NY 11554 USA.

Published: December 2013

Quinones are electron and proton carriers that play a primary role in the aerobic metabolism of virtually every cell in nature. Most physiological quinones are benzoquinones. They undergo highly regulated redox reactions in the mitochondria, Golgi apparatus, plasma membrane and endoplasmic reticulum. Important consequences of these electron transfer reactions are the production of and protection against reactive oxygen species (ROS). Quinones have been extensively studied for both their cytotoxic as well as cellular protective properties and they have been particularly useful in rational drug design. The role of quinones in medicine is explored in this literature review with a particular focus on renal diseases. Due to their high basal metabolism and detoxification role, the kidneys are particularly sensitive to oxidative stress. Regardless of the underlying etiology, ROS plays an important role in both acute kidney injury (AKI) and chronic kidney diseases (CKD). Depending on the oxidative state of the kidney, quinones can be nephrotoxoic or nephro-protective. Many factors play a role in the interaction between quinones and the kidney and the consequences of this are just beginning to be explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3618882PMC
http://dx.doi.org/10.1186/2193-1801-2-139DOI Listing

Publication Analysis

Top Keywords

role quinones
8
quinones
7
role
5
review role
4
quinones renal
4
renal disorders
4
disorders quinones
4
quinones electron
4
electron proton
4
proton carriers
4

Similar Publications

Exposure to 6PPD-Q induces dysfunctions of ovarian granulosa cells: Its potential role in PCOS.

J Hazard Mater

December 2024

Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China. Electronic address:

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), an environmental pollutant derived from the ozonolysis of the widely used tire rubber antioxidant 6PPD, has been found to accumulate in air, dust, and water, posing significant health risks. While its reproductive toxicity in male organisms has been established, its effects on female reproductive health remain unclear. Polycystic ovary syndrome (PCOS), a common endocrine disorder in premenopausal women, is known to be influenced by environmental pollutants.

View Article and Find Full Text PDF

Phenol-Quinone Redox Couples of Natural Organic Matter Promote Mercury Methylation in Paddy Soil.

Environ Sci Technol

January 2025

National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.

Methylmercury in paddy soils poses threats to food security and thus human health. Redox-active phenolic and quinone moieties of natural organic matter (NOM) mediate electron transfer between microbes and mercury during mercury reduction. However, their role in mercury methylation remains elusive.

View Article and Find Full Text PDF

Thymoquinone (TQ) has shown antitumorigenic effects in breast cancer; however, its detailed impact on cell signaling mechanisms requires further investigation. This study aims to elucidate the molecular mechanisms behind TQ's antiproliferative effects in breast cancer by analyzing proteome-level changes. MCF-7 cells were treated with 15 µM TQ, the inhibitory concentration (IC50), for 48 h.

View Article and Find Full Text PDF

Tetrahydroxy-1,4-benzoquinone (THQ) is a highly redox-active substance that generates reactive oxygen species (ROS), which can induce apoptosis in cell culture experiments. The underlying mechanism for ROS production has previously been postulated to be the autoxidation of THQ to rhodizonic acid (RhA). However, our results suggest that the cells detoxify THQ by reducing it to hexahydroxybenzene (HHB), catalyzed by the NADPH-quinone-oxidoreductase (NQO1).

View Article and Find Full Text PDF

This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!