In vivo measurement of mid-infrared light scattering from human skin.

Biomed Opt Express

Princeton Institute for the Science and Technology of Materials, Princeton University, Princeton, NJ 08540, USA ; Current Address: Department of Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

Published: April 2013

Two mid-infrared light sources, a broadband source from a Fourier Transform Infrared Spectrometer (FTIR) and a pulsed Quantum Cascade (QC) Laser, are used to measure angle-resolved backscattering in vivo from human skin across a broad spectral range. Scattering profiles measured using the FTIR suggest limited penetration of the light into the skin, with most of the light interacting with the stratum corneum layer of the epidermis. Scattering profiles from the QC laser show modulation patterns with angle suggesting interaction with scattering centers in the skin. The scattering is attributed to interaction of the laser light with components such as collagen fibers and capillaries in the dermis layer of the skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3617714PMC
http://dx.doi.org/10.1364/BOE.4.000520DOI Listing

Publication Analysis

Top Keywords

mid-infrared light
8
human skin
8
scattering profiles
8
light
5
scattering
5
skin
5
vivo measurement
4
measurement mid-infrared
4
light scattering
4
scattering human
4

Similar Publications

Laser absorption spectroscopy (LAS) is a well-established measurement technique for quantitative chemical speciation in a combustion environment. However, LAS measurement of nitric oxide (NO) in ammonia flames has never been reported in the literature. This is despite the community's recent strong interest in carbon-neutral ammonia combustion and the associated NO formation problem.

View Article and Find Full Text PDF

We propose and experimentally demonstrate what we believe to be the first mid-infrared surface plasmon resonance (SPR) fiber optic sensor using a D-shaped multimode silica optical fiber coated with a 105 nm indium tin oxide (ITO) layer. The sensor shows resonance around 2700 nm, with a refractive index sensitivity of 1065.70 nm per refractive index unit (nm/RIU) for refractive indices ranging from 1.

View Article and Find Full Text PDF

Crystal Structural Editing: Novel Biaxial MgTeO Crystal as Zero-Order Waveplates.

Adv Mater

January 2025

State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan, 250100, China.

Waveplates are important optical components to control the polarization of light. Currently, they are often fabricated from uniaxial crystals, and there is no report about waveplates based on the biaxial crystals. In this work, a novel biaxial crystal MgTeO with a structure constructed by 0D TeO groups is designed and grown as waveplate materials for the first time.

View Article and Find Full Text PDF

Daytime radiative cooling (DRC) materials offer a sustainable, pollution-free passive cooling solution. Traditional DRC materials are usually white to maximize solar reflectance, but applications like textiles and buildings need more aesthetic options. Unfortunately, colorizing DRC materials often reduce cooling efficiency due to colorant sunlight absorption.

View Article and Find Full Text PDF

Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!