Syndromic surveillance using veterinary laboratory data: data pre-processing and algorithm performance evaluation.

J R Soc Interface

Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.

Published: June 2013

AI Article Synopsis

  • The study examined diagnostic test orders from an animal laboratory to track clinical syndromes in cattle, utilizing four years of real data alongside simulated outbreak scenarios.
  • Weekly differencing effectively removed day-of-week effects in the data, demonstrating reliable performance even with low counts.
  • No single detection algorithm outperformed all others; however, using multiple algorithms in parallel, like exponentially weighted moving average charts and Holt-Winters exponential smoothing, offered complementary benefits for early detection of outbreaks.

Article Abstract

Diagnostic test orders to an animal laboratory were explored as a data source for monitoring trends in the incidence of clinical syndromes in cattle. Four years of real data and over 200 simulated outbreak signals were used to compare pre-processing methods that could remove temporal effects in the data, as well as temporal aberration detection algorithms that provided high sensitivity and specificity. Weekly differencing demonstrated solid performance in removing day-of-week effects, even in series with low daily counts. For aberration detection, the results indicated that no single algorithm showed performance superior to all others across the range of outbreak scenarios simulated. Exponentially weighted moving average charts and Holt-Winters exponential smoothing demonstrated complementary performance, with the latter offering an automated method to adjust to changes in the time series that will likely occur in the future. Shewhart charts provided lower sensitivity but earlier detection in some scenarios. Cumulative sum charts did not appear to add value to the system; however, the poor performance of this algorithm was attributed to characteristics of the data monitored. These findings indicate that automated monitoring aimed at early detection of temporal aberrations will likely be most effective when a range of algorithms are implemented in parallel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3645420PMC
http://dx.doi.org/10.1098/rsif.2013.0114DOI Listing

Publication Analysis

Top Keywords

algorithm performance
8
aberration detection
8
data
6
performance
5
syndromic surveillance
4
surveillance veterinary
4
veterinary laboratory
4
laboratory data
4
data data
4
data pre-processing
4

Similar Publications

Inspired by classical works, when constructing local relationships in point clouds, there is always a geometric description of the central point and its neighboring points. However, the basic geometric representation of the central point and its neighborhood is insufficient. Drawing inspiration from local binary pattern algorithms used in image processing, we propose a novel method for representing point cloud neighborhoods, which we call Point Cloud Local Auxiliary Block (PLAB).

View Article and Find Full Text PDF

Using deep learning to shorten the acquisition time of brain MRI in acute ischemic stroke: Synthetic T2W images generated from b0 images.

PLoS One

January 2025

Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.

Objective: This study aimed to assess the feasibility of the deep learning in generating T2 weighted (T2W) images from diffusion-weighted imaging b0 images.

Materials And Methods: This retrospective study included 53 patients who underwent head magnetic resonance imaging between September 1 and September 4, 2023. Each b0 image was matched with a corresponding T2-weighted image.

View Article and Find Full Text PDF

Objectives: Approximal caries diagnosis in children is difficult, and artificial intelligence-based research in pediatric dentistry is scarce. To create a convolutional neural network (CNN)-based diagnostic system for the prompt and efficient identification of approximal caries in pediatric patients aged 5-12 years.

Materials And Methods: Pediatric patients' digital periapical radiographic images were collected to create a unique dataset.

View Article and Find Full Text PDF

Spontaneous intracranial artery dissection (sIAD) is the leading cause of stroke in young individuals. Identifying high-risk sIAD cases that exhibit symptoms and are likely to progress is crucial for treatment decision-making. This study aimed to develop a model relying on circulating biomarkers to discriminate symptomatic sIADs.

View Article and Find Full Text PDF

This study investigates the effectiveness and efficiency of two topological data analysis (TDA) techniques, the conventional Mapper (CM) and its variant version, the Ball Mapper (BM), in analyzing the behavior of six major air pollutants (NO, PM, PM, O, CO, and SO) across 60 air quality monitoring stations in Malaysia. Topological graphs produced by CM and BM reveal redundant monitoring stations and geographical relationships corresponding to air pollutant behavior, providing better visualization than traditional hierarchical clustering. Additionally, a comparative analysis of topological graph structures was conducted using node degree distribution, topological graph indices, and Dynamic Time Warping (DTW) to evaluate the sensitivity and performance of these TDA techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!