A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Common mechanism unites membrane poration by amyloid and antimicrobial peptides. | LitMetric

Common mechanism unites membrane poration by amyloid and antimicrobial peptides.

Proc Natl Acad Sci U S A

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.

Published: April 2013

Poration of bacterial membranes by antimicrobial peptides such as magainin 2 is a significant activity performed by innate immune systems. Pore formation by soluble forms of amyloid proteins such as islet amyloid polypeptide (IAPP) is implicated in cell death in amyloidoses. Similarities in structure and poration activity of these two systems suggest a commonality of mechanism. Here, we investigate and compare the mechanisms by which these peptides induce membrane leakage and bacterial cell death through the measurement of liposome leakage kinetics and bacterial growth inhibition. For both systems, leakage occurs through the nucleation-dependent formation of stable membrane pores. Remarkably, we observe IAPP and magainin 2 to be fully cross-cooperative in the induction of leakage and inhibition of bacterial growth. The effects are dramatic, with mixtures of these peptides showing activities >100-fold greater than simple sums of the activities of individual peptides. Direct protein-protein interactions cannot be the origin of cooperativity, as IAPP and its enantiomer D-IAPP are equally cross-cooperative. We conclude that IAPP and magainin 2 induce membrane leakage and cytotoxicity through a shared, cross-cooperative, tension-induced poration mechanism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631635PMC
http://dx.doi.org/10.1073/pnas.1219059110DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
cell death
8
induce membrane
8
membrane leakage
8
bacterial growth
8
iapp magainin
8
peptides
5
leakage
5
common mechanism
4
mechanism unites
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!