Ontogeny of ornithine-urea cycle gene expression in zebrafish (Danio rerio).

Am J Physiol Regul Integr Comp Physiol

Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.

Published: June 2013

Although the majority of adult teleosts excrete most of their nitrogenous wastes as ammonia, several fish species are capable of producing urea early in development. In zebrafish, it is unclear whether this results from a functional ornithine-urea cycle (O-UC) and, if so, how it might be regulated. This study examined the spatiotemporal patterns of gene expression of four major O-UC enzymes: carbamoyl phosphate synthase III (CPSIII), ornithine transcarboxylase, arginosuccinate synthetase, and arginosuccinate lyase, using real-time PCR and whole mount in situ hybridization. In addition, we hypothesized that CPSIII gene expression was epigenetically regulated through methylation of its promoter, a widespread mode of differential gene regulation between tissues and life stages in vertebrates. Furthermore, to assess CPSIII functionality, we used morpholinos to silence CPSIII in zebrafish embryos and assessed their nitrogenous waste handling during development, and in response to ammonia injections. Our results suggest that mRNAs of O-UC enzymes are expressed early in zebrafish development and colocalize to the embryonic endoderm. In addition, the methylation status of CPSIII promoter is not consistent with the patterns of expression observed in developing larvae or adult tissues, suggesting other means of transcriptional regulation of this enzyme. Finally, CPSIII morphants exhibited a transient reduction in CPSIII enzyme activity 24 h postfertilization, which was paralleled by reduced urea production during development and in response to an ammonia challenge. Overall, we conclude that the O-UC is functional in zebrafish embryos, providing further evidence that the capacity to produce urea via the O-UC is widespread in developing teleosts.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00411.2012DOI Listing

Publication Analysis

Top Keywords

gene expression
12
ornithine-urea cycle
8
o-uc enzymes
8
zebrafish embryos
8
development response
8
response ammonia
8
cpsiii
7
zebrafish
5
o-uc
5
ontogeny ornithine-urea
4

Similar Publications

Prospective validation study of a combined urine and plasma test for predicting high-grade prostate cancer in biopsy naïve men.

Scand J Urol

January 2025

Department of Urology, Odense University Hospital, Odense, Denmark; Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.

Objective: Early and accurate diagnosis of prostate cancer (PC) is crucial for effective treatment. Diagnosing  clinically insignificant cancers can lead to overdiagnosis and overtreatment, highlighting the importance of accurately selecting patients for further evaluation based on improved risk prediction tools. Novel biomarkers offer promise for enhancing this diagnostic process.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.

View Article and Find Full Text PDF

Introduction: Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear.

View Article and Find Full Text PDF

Mediator, a transcriptional coactivator, regulates plant growth and development by interacting with various transcriptional regulators. MEDIATOR15 (MED15) is a subunit in the Mediator complex potentially involved in developmental control. To uncover molecular functions of Arabidopsis MED15 in development, we searched for its interactors.

View Article and Find Full Text PDF

The aerial epidermis is a major site of quinolizidine alkaloid biosynthesis in narrow-leafed lupin.

New Phytol

January 2025

Section for Plant Biochemistry and Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.

Lupins are promising protein crops that accumulate toxic quinolizidine alkaloids (QAs) in the seeds, complicating their end-use. QAs are synthesized in green organs (leaves, stems, and pods) and a subset of them is transported to the seeds during fruit development. The exact sites of biosynthesis and accumulation remain unknown; however, mesophyll cells have been proposed as sources, and epidermal cells as sinks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!