Because neuronal nitric oxide synthase (nNOS) has a well-known impact on arteriolar blood flow in skeletal muscle, we compared the ultrastructure and the hemodynamics of/in the ensuing capillaries in the extensor digitorum longus (EDL) muscle of male nNOS-knockout (KO) mice and wild-type (WT) littermates. The capillary-to-fiber (C/F) ratio (-9.1%) was lower (P ≤ 0.05) in the nNOS-KO mice than in the WT mice, whereas the mean cross-sectional fiber area (-7.8%) and the capillary density (-3.1%) varied only nonsignificantly (P > 0.05). Morphometrical estimation of the area occupied by the capillaries as well as the volume and surface densities of the subcellular compartments differed nonsignificantly (P > 0.05) between the two strains. Intravital microscopy revealed neither the capillary diameter (+3% in nNOS-KO mice vs. WT mice) nor the mean velocity of red blood cells in EDL muscle (+25% in nNOS-KO mice vs. WT mice) to significantly vary (P > 0.05) between the two strains. The calculated shear stress in the capillaries was likewise nonsignificantly different (3.8 ± 2.2 dyn/cm² in nNOS-KO mice and 2.1 ± 2.2 dyn/cm² in WT mice; P > 0.05). The mRNA levels of vascular endothelial growth factor (VEGF)-A were lower in the EDL muscle of nNOS-KO mice than in the WT littermates (-37%; P ≤ 0.05), whereas mRNA levels of VEGF receptor-2 (VEGFR-2) (-11%), hypoxia inducible factor-1α (+9%), fibroblast growth factor-2 (-14%), and thrombospondin-1 (-10%) differed nonsignificantly (P > 0.05). Our findings support the contention that VEGF-A mRNA expression and C/F-ratio but not the ultrastructure or the hemodynamics of/in capillaries in skeletal muscle at basal conditions depend on the expression of nNOS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00434.2012 | DOI Listing |
Front Cell Neurosci
March 2023
Institute for Neuroscience of Castilla and León (INCYL), Universidad de Salamanca, Salamanca, Spain.
The main olfactory bulb (MOB) is a neural structure that processes olfactory information. Among the neurotransmitters present in the MOB, nitric oxide (NO) is particularly relevant as it performs a wide variety of functions. In this structure, NO is produced mainly by neuronal nitric oxide synthase (nNOS) but also by inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS).
View Article and Find Full Text PDFBull Tokyo Dent Coll
December 2019
Division of Oral Histology, Department of Morphological Biology, Ohu University School of Dentistry.
Active oxygen and free radicals are involved in metabolism in cells and tissues. Immunohistological studies of related enzymes are few, and the morphological dynamics of these enzymes in dental pulp and odontoblasts remain to be elucidated. Nitric oxide synthase (NOS) has 3 isoforms: nNOS, iNOS, and eNOS.
View Article and Find Full Text PDFNitric Oxide
July 2018
Institute of Physiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
Am J Physiol Renal Physiol
January 2017
Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; and
Neuromuscul Disord
December 2015
Department of Cell Biology and Molecular Medicine, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, 07103, USA. Electronic address:
The neuronal nitric-oxide synthase (nNOS) splice variant nNOSµ is essential for skeletal muscle function. Its localization is dependent on dystrophin, which stabilizes the dystrophin glycoprotein complex (DGC) at the sarcolemma of skeletal muscle fibers. In Duchenne muscular dystrophy (DMD) dystrophin is absent and sarcolemmal nNOS is lost.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!