Unlabelled: Helicobacter pylori (H. pylori) infections are strongly implicated in human gastric mucosa-associated diseases. Forkhead box M1 (FoxM1), a key positive regulator of cell proliferation, is overexpressed in gastric cancer. MicroRNAs are important post-transcriptional regulators of gene expression. In this study, the effects of H. pylori infection on FoxM1 expression and possible mechanisms of carcinogenesis were explored. The expression of FoxM1 was gradually increased in human gastric specimens from inflammation to cancer. FoxM1 upregulation was time- and concentration-dependent in gastric epithelial-derived cell lines infected with H. pylori. CagA, a key virulence factor of H. pylori, was associated with increased FoxM1 expression. H. pylori and CagA inhibited the expression of p27(Kip1) (CDKN1B) and promoted cell proliferation by upregulating FoxM1. The expression of miR-370 was decreased in human gastritis and gastric cancer. FoxM1 was directly downregulated by miR-370 in gastric cell lines. H. pylori and CagA inhibited miR-370 expression, which led to overexpression of FoxM1 and cell proliferation. Furthermore, the overexpression of FoxM1 and reduced expression of miR-370 was confirmed in H. pylori-infected C57BL/6J mice. H. pylori infection and CagA upregulated FoxM1 expression, dependent on miR-370, altered the expression of p27(Kip1), and promoted proliferation in gastric cells.
Implications: These findings delineate the mechanisms governing FoxM1 regulation and the role of H. pylori in the process of gastric carcinogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1541-7786.MCR-13-0007 | DOI Listing |
Nature
January 2025
Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
Identifying phase-separated structures remains challenging, and effective intervention methods are currently lacking. Here we screened for phase-separated proteins in breast tumour cells and identified forkhead (FKH) box protein M1 (FOXM1) as the most prominent candidate. Oncogenic FOXM1 underwent liquid-liquid phase separation (LLPS) with FKH consensus DNA element, and compartmentalized the transcription apparatus in the nucleus, thereby sustaining chromatin accessibility and super-enhancer landscapes crucial for tumour metastatic outgrowth.
View Article and Find Full Text PDFJ Cancer
January 2025
Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong, Sichuan, China, 637003.
Melanoma poses a significant challenge to patients due to its aggressive nature and limited treatment options. Recent studies have suggested that lasalocid, a feed additive ionophore antibiotic, may have potential as an anticancer agent. However, the mechanism of lasalocid in melanoma is unclear.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia.
Indolo[2,3-]pyrrolo[3,4-]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Cell viability was estimated by an MTT assay.
View Article and Find Full Text PDFMol Carcinog
January 2025
Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, Guangdong, China.
Pancreatic cancer is a highly lethal malignancy with few effective treatment options. Connexin 31 (Cx31) is a membrane protein capable of forming hexameric channels to facilitate the exchange of metabolites and signaling molecules. Yet, the contribution of Cx31 to the onset and progression of pancreatic cancer remains to be understood.
View Article and Find Full Text PDFEur J Pharmacol
January 2025
School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan province, PR China. Electronic address:
FOXM1 is the "Achilles' heel" of cancers and hence the potential therapeutic target for anticancer drug discovery. In this work, we selected high affinity peptides against the protein of human DNA binding domain of FOXM1 (FOXM1-DBD) from the disulfide-constrained, phage displayed random cyclic heptapeptide library Ph.D.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!