The exact evolutionary origin of the zinc finger (ZF) domain is unknown, as it is still not clear from which organisms it was first derived. However, the unique features of the ZF domains have made it very easy for evolution to tinker with them in a number of different manners, including their combination, variation of their number by unequal crossing-over or tandem duplication and tuning of their affinity for specific DNA sequence motifs through point substitutions. Classical Cys2His2 ZF domains as structurally autonomous motifs arranged in multiple copies are known only in eukaryotes. Nonetheless, a single prokaryotic Cys2His2 ZF domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens and recently characterized. The present work focuses on the evolution of the classical ZF domains with the goal of trying to determine whether eukaryotic ZFs have evolved from the prokaryotic Ros-like proteins. Our results, based on computational and experimental data, indicate that a single insertion of three amino acids in the short loop that separates the β-sheet from the α-helix of the Ros protein is sufficient to induce a structural transition from a Ros like to an eukaryotic-ZF like structure. This observation provides evidence for a structurally plausible and parsimonious scenario of fold evolution, giving a structural basis to the hypothesis of a horizontal gene transfer (HGT) from bacteria to eukaryotes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/molbev/mst068 | DOI Listing |
Viruses
December 2024
Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia.
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range.
View Article and Find Full Text PDFViruses
November 2024
Chantal BIYA International Reference Centre for Research on HIV/AIDS Prevention and Management, Yaoundé P.O. Box 3077, Cameroon.
Dual therapies (DT) combining integrase strand transfer inhibitors (INSTIs) with second-generation non-nucleoside reverse transcriptase inhibitors (2nd-Gen-NNRTIs) offer new possibilities for HIV treatment to improve adherence. However, drug resistance associated mutations (RAMs) to prior antiretrovirals may jeopardize the efficacy of DT. We herein describe the predicted efficacy of DT combining INSTIs + 2nd-Gen-NNRTI following treatment failure among Cameroonian patients.
View Article and Find Full Text PDFViruses
November 2024
Virology Department, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar 220, Senegal.
Babanki virus is a subtype of the Sindbis virus, a widespread arthropod-borne alphavirus circulating in Eurasia, Africa, and Oceania. Characterized by rashes and arthritis, clinical infections due to Sindbis were mainly reported in Africa, Australia, Asia, and Europe. However, its sub-type, Babanki virus, was reported in Northern Europe and Africa, where its epidemiology potential remains poorly understood.
View Article and Find Full Text PDFViruses
November 2024
Centre for Clinical Research, Epidemiology, Modelling and Evaluation (CREME), Institute for Global Health, Univesity College London, London WC1E 6BT, UK.
: This study examined the impact of the COVID-19 lockdown on antiretroviral therapy (ART) prescriptions among persons living with HIV (PWH) in Italy. : Data from the ICONA cohort included ART-naïve individuals who started ART between January 2019 and December 2022, and ART-experienced individuals who started new ART with HIV RNA ≤50 cps/mL from January 2016 to December 2022. The analysis focused on the proportion of PWH starting or switching to dual (2DR) versus triple (3DR) ART regimens.
View Article and Find Full Text PDFViruses
November 2024
The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, VIC 3219, Australia.
A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!