Kinesin spindle protein (KSP), an ATP-dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide)) assays, combined with fluorescence-assisted cell sorting (FACS) and Western blot studies analyzing cell-cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7, exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201200400 | DOI Listing |
Basic Clin Pharmacol Toxicol
January 2025
Collaborative Innovation Center of Targeted Development of Medicinal Resources (iCTM) & Research Center of Aquatic Organism Conservation and Water Ecosystem Restoration, Anqing Normal University, Anqing, China.
UDP-glucuronosyltransferases (UGTs) are responsible for inactivation of a variety of drugs, endogenous hormones and environmental toxicants. Chemical inhibitors are a common factor decreasing UGT activities and furtherly inducing health problems. Although simultaneously encountering different inhibitors is readily to occur, no information is available for combined inhibition of UGT.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Liquid crystal monomers (LCMs) are potentially persistent, bioaccumulative, and toxic emerging pollutants. However, their occurrence in outdoor PM and related human exposure risks remain unknown. In this study, 32 composite samples were analyzed, which were prepared from daily PM samples collected throughout the year 2021 -2022 in Beijing, China.
View Article and Find Full Text PDFBeilstein J Org Chem
December 2024
Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg (UMR 7504), F-67034 Strasbourg, France.
The high potential of non-covalent arene-fluoroarene intermolecular interactions in the design of liquid crystals lies in their ability to strongly promote self-assembly, improve the order and stability of the supramolecular mesophases, and enable tuneability of the optical and electronic properties, which can potentially be exploited for advanced applications in display technologies, photonic devices, sensors, and organic electronics. We recently successfully reported the straightforward synthesis of several mesogens containing four lateral aliphatic chains and derived from the classical triphenylene core self-assembling in columnar mesophases based on this paradigm. These mesogenic compounds were simply obtained in good yields by the nucleophilic substitution (SFAr) of various types of commercially available fluoroarenes with the electrophilic organolithium derivatives 2,2'-dilithio-4,4',5,5'-tetraalkoxy-1,1'-biphenyl (2Li- ).
View Article and Find Full Text PDFMikrochim Acta
December 2024
College of Food Science and Engineering, Wuhan Polytechnic University, Xuefu South Road No. 68, Changqing Garden, Wuhan, Hubei Province, 430023, China.
Gold nanoclusters decorated hollow ZIF-8 encapsulating iron-catecholates (Fe-HHTP@HZIF-8@ AuNCs) was formed through self-assembly of Fe and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP), in situ embedding of ZIF-8, and Au-Zn exchange reaction. Its morphology and structure were fully characterized by high-resolution transmission electron microscopy, X-ray diffraction, transmission electron microscopy element mapping, and X-ray photoelectron spectroscopy. Additionally, its oxidase-like activity was explored with K of 0.
View Article and Find Full Text PDFMikrochim Acta
December 2024
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, 030032, China.
A pasting-3D microfluidic paper-based analytical device (P-3D μPAD) was developed. It enabled an efficient cascade reaction between urate oxidase (UOX) and Fe/Pt-doped carbon nanoparticles (Fe/Pt-CNPs) for visual colorimetric detection of uric acid (UA). The novel Fe/Pt-CNP nanozyme performed high peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) and HO with Michaelis - Menten constants (K) of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!