Long-term potentiation (LTP) of synaptic strength in nociceptive pathways is a cellular model of hyperalgesia. The emerging literature suggests a role for cytokines released by spinal glial cells for both LTP and hyperalgesia. However, the underlying mechanisms are still not fully understood. In rat lumbar spinal cord slices, we now demonstrate that conditioning high-frequency stimulation of primary afferents activated spinal microglia within <30 min and spinal astrocytes within ~2 s. Activation of spinal glia was indispensible for LTP induction at C-fiber synapses with spinal lamina I neurons. The cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), which are both released by activated glial cells, were individually sufficient and necessary for LTP induction via redundant pathways. They differentially amplified 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)-propanoic acid receptor-mediated and N-methyl-D-aspartic acid receptor-mediated synaptic currents in lamina I neurons. Unexpectedly, the synaptic effects by IL-1β and TNF-α were not mediated directly via activation of neuronal cytokine receptors, but rather, indirectly via IL-1 receptors and TNF receptors being expressed on glial cells in superficial spinal dorsal horn. Bath application of IL-1β or TNF-α led to the release profiles of pro-inflammatory and anti-inflammatory cytokines, chemokines, and growth factors, which overlapped only partially. Heat hyperalgesia induced by spinal application of either IL-1β or TNF-α in naive animals also required activation of spinal glial cells. These results reveal a novel, decisive role of spinal glial cells for the synaptic effects of IL-1β and TNF-α and for some forms of hyperalgesia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619063 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.5087-12.2013 | DOI Listing |
Langmuir
January 2025
Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, United States.
Biological memory is the ability to develop, retain, and retrieve information over time. Currently, it is widely accepted that memories are stored in synapses (i.e.
View Article and Find Full Text PDFJ Physiol Sci
December 2024
Department of Memory Neuroscience, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan; Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto-city, Kyoto 606-8501, Japan. Electronic address:
Reactive oxygen species (ROS) are redox-signaling molecules involved in aging and lifestyle-related diseases. In the brain, in addition to the production of ROS as byproducts of metabolism, expression of ROS synthases has recently been demonstrated, suggesting possible involvement of ROS in various brain functions. This review highlights current knowledge on the relationship between ROS and brain functions, including their contribution to age-related decline in synaptic plasticity and cognitive function.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
January 2025
Centro de Investigación Clínica Avanzada (CICA), Hospital Clínico Universidad de Chile.
Postoperative delirium (POD), an acute cognitive dysfunction linked to morbidity and mortality, is characterized by memory impairments and disturbances in consciousness, particularly in patients aged 65 and older. Neuroinflammation and NAD+ imbalance are key mechanisms behind POD, leading to synaptic and cognitive deterioration. However, how surgery contributes to POD and neuroinflammation remains unclear, and effective treatments are lacking.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).
Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!