Modifications of synaptic efficacies are considered essential for learning and memory. However, it is not known how the underlying functional components of synaptic transmission change over long time scales. To address this question, we studied cortical synapses from young Wistar rats before and after 12 h intervals of spontaneous or glutamate-induced spiking activity. We found that, under these conditions, synaptic efficacies can increase or decrease by up to 10-fold. Statistical analyses reveal that these changes reflect modifications in the number of presynaptic release sites, together with postsynaptic changes that maintain the quantal size per release site. The quantitative relation between the presynaptic and postsynaptic transmission components was not affected when synaptic plasticity was enhanced or reduced using a broad range of pharmacological agents. These findings suggest that ongoing synaptic plasticity results in matched presynaptic and postsynaptic modifications, in which elementary modules that span the synaptic cleft are added or removed as a function of experience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619066 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.3740-12.2013 | DOI Listing |
Funct Integr Genomics
January 2025
National Agri-Food and Biomanufacturing Institute, Sector-81, SAS Nagar, Knowledge City, Punjab, India.
Mitochondria, the cellular powerhouses, are pivotal to neuronal function and health, particularly through their role in regulating synaptic structure and function. Spine reprogramming, which underlies synapse development, depends heavily on mitochondrial dynamics-such as biogenesis, fission, fusion, and mitophagy as well as functions including ATP production, calcium (Ca) regulation, and retrograde signaling. Mitochondria supply the energy necessary for assisting synapse development and plasticity, while also regulating intracellular Ca homeostasis to prevent excitotoxicity and support synaptic neurotransmission.
View Article and Find Full Text PDFTrends Mol Med
January 2025
Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China. Electronic address:
Regular physical activity (PA) is beneficial for cognitive health, and cathepsin B (CTSB) - a protease released by skeletal muscle during PA - acts as a potential molecular mediator of this association. PA-induced metabolic and mechanical stress appears to increase plasma/serum CTSB levels. CTSB facilitates neurogenesis and synaptic plasticity in brain regions (e.
View Article and Find Full Text PDFTrends Neurosci
January 2025
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China. Electronic address:
The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!