This paper introduces not only a simple hydrothermal route to silver-polyaniline (Ag-PANI) nanocomposites with controllable morphology, but also a type of catalyst possessing tunable and switchable catalytic capability. Ag-PANI Janus nanoparticles (NPs) and Ag@PANI core-shell NPs have been constructed successfully at different hydrothermal temperatures. The diameter of both Ag and PANI hemispheres of Janus NPs, as well as the PANI shell thickness of core-shell NPs, was finely tuned via adjustment of the feed ratio. We also gained a deeper insight into the functionalities of PANI components in the catalytic capability of the heterogeneous catalysts, choosing catalytic reductions of nitrobenzene (NB) and 4-nitrophenol (4-NP) as model reactions. Our results showed that the catalytic capability of the nanocomposites was dependent on the PANI morphology and hydrophobicity. The PANI shell coating on Ag NPs can concentrate the lipophilic NB, thus leading to an enhanced catalytic capability of Ag@PANI core-shell NPs. However, this enhanced catalytic capability was not observed for Ag-PANI Janus NPs when catalytically reducing NB. More importantly, the catalytic capability of the core-shell NPs in the reduction of hydrophilic 4-NP is switchable by varying the PANI shell from an undoped to a doped state.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0957-4484/24/18/185602DOI Listing

Publication Analysis

Top Keywords

catalytic capability
24
core-shell nps
16
pani shell
12
catalytic
8
ag-pani janus
8
nps
8
ag@pani core-shell
8
janus nps
8
enhanced catalytic
8
capability
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!