Cover crop mulch and weeds create habitat complexity in agricultural fields that may influence arthropods. Under strip-tillage systems, planting rows are tilled and preestablished cover crops can remain between rows. In field experiments conducted in Michigan in 2010 and 2011, a preestablished oat (Avena sativa L.) cover crop was allowed to grow between rows of strip-tilled cabbage and killed at 0, 9-14, or 21-27 d after transplanting (DAT). The effects of herbicide intensity and oat kill date on arthropods, weeds, and crop yield were examined. Two levels of herbicide intensity (low or high) were used to manipulate habitat vegetational complexity, with low weed management intensity resulting in more weeds, particularly in 2010. Oat kill date manipulated the amount of cover crop mulch on the soil surface. Later oat kill dates were associated with higher natural enemy abundance. Reduced herbicide intensity was associated with (1) lower abundance of several key cabbage (Brassica oleraceae L.) pests, and (2) greater abundance of important natural enemy species. Habitats with both later oat kill dates and reduced herbicide intensity contained (1) fewer herbivores with chewing feeding guilds and more specialized diet breadths, and (2) greater abundance of active hunting natural enemies. Oats reduced cabbage yield when oat kill was delayed past 9-14 DAT. Yields were reduced under low herbicide intensity treatments in 2010 when weed pressure was greatest. We suspect that increased habitat complexity associated with oat mulches and reduced herbicide intensity enhances biological control in cabbage, although caution should be taken to avoid reducing yields or enhancing hyperparasitism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/EN12192 | DOI Listing |
Plants (Basel)
December 2024
Laboratory of Plant Biochemistry, Department of Biochemistry, State University of Maringá, Maringá 87020-900, Brazil.
Chemical weed control is a significant agricultural concern, and reliance on a limited range of herbicide action modes has increased resistant weed species, many of which use C4 metabolism. As a result, the identification of novel herbicidal agents with low toxicity targeting C4 plants becomes imperative. An assessment was conducted on the impact of 3-cyanobenzoic acid on the growth and photosynthetic processes of maize (), a representative C4 plant, cultivated hydroponically over 14 days.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Agricultural Sciences, Banaras Hindu University, India, Varanasi.
In South Asia, declining water tables due to increased irrigation and labor shortages for manual weeding pose significant challenges for wheat production. Additionally, herbicide resistance, often resulting from poor management practices, further complicates weed problems. The objective of this study was to assess the impacts of traditional irrigation regimens (IRs) and herbicide application on wheat crops.
View Article and Find Full Text PDFNat Prod Rep
January 2025
School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health.
View Article and Find Full Text PDFReprod Biol
December 2024
Universidade Federal de Viçosa, Departamento de Biologia Geral, Vicosa, Brasil. Electronic address:
Atrazine is an herbicide widely used on plantations worldwide. Experimental studies suggest that the herbicide impairs male reproductive function in mammals. This systematic review and meta-analysis aimed to evaluate the impact of atrazine exposure on the levels of hormones from the hypothalamic-pituitary-testicular axis using murine as the animal model.
View Article and Find Full Text PDFMar Pollut Bull
December 2024
Coastal and Marine Research Centre, Australian Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, QLD 4222, Australia.
Multiple anthropogenic stressors degrade ecosystems globally. A key knowledge gap in multiple stressor research is how variability in stressor intensity (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!