Green sea urchins Strongylocentrotus droebachiensis along the coast of Nova Scotia, Canada, suffer mass mortalities from infection by the pathogenic amoeba Paramoeba invadens Jones, 1985. It has been speculated that P. invadens could be a form of Neoparamoeba pemaquidensis, a species associated with disease in S. droebachiensis and lobsters in the northeast USA. During a disease outbreak in fall 2011, we isolated amoebae from moribund urchins collected from 4 locations along ~200 km of coastline. In laboratory infection trials, we found that timing and rate of morbidity corresponded to that of similar experiments conducted in the early 1980s, when P. invadens was first identified. All isolates had a similar size and morphology to the original description, including an absence of microscales. Sequences of nuclear SSU rDNA show that disease was caused by one 'species' of amoeba across the range sampled. Phylogenetic analyses prove that P. invadens is not conspecific with N. pemaquidensis, but is a distinct species most closely related to N. branchiphila, a suspected pathogen of sea urchins Diadema aff. antillarum in the Canary Islands, Spain. Morphology and closest phylogenetic affinities suggest that P. invadens would be assignable to the genus Neoparamoeba; however, nuclear SSU rDNA trees show that Neoparamoeba and Paramoeba are phylogenetically inseparable. Therefore, we treat Neoparamoeba as a junior synonym of Paramoeba, with P. invadens retaining that name, and N. pemaquidensis and N. aestuarina reverting to their original names (P. pemaquidensis and P. aestuarina), and with new combinations for N. branchiphila Dykova et al., 2005, and N. perurans Young et al., 2007, namely P. branchiphila comb. nov. and P. perurans comb. nov.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3354/dao02577 | DOI Listing |
Int J Syst Evol Microbiol
November 2021
Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab, St Petersburg, Russia.
Amoebozoan parasites of arrow-worms (Chaetognatha) were isolated from their hosts living in plankton of the Bay of Villefranche (Mediterranean Sea). Based on the light microscopic characters, the amoebae were identified as (Grassi, 1881) by their limax locomotive form and due to the presence of the intracellular symbiont, , surrounded by a layer of pigment granules. Sequences of the 18S rRNA gene of both and its symbiont were obtained for the first time.
View Article and Find Full Text PDFJ Eukaryot Microbiol
September 2017
Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, NS, B3H 4H7, Canada.
Members of the genus Paramoeba (including Neoparamoeba) (Amoebozoa) are single-celled eukaryotes of economic and ecological importance because of their association with disease in a variety of marine animals including fish, sea urchins, and lobster. Interestingly, they harbor a eukaryotic endosymbiont of kinetoplastid ancestry, Perkinsela sp. To investigate the complex relationship between Paramoeba spp.
View Article and Find Full Text PDFDis Aquat Organ
April 2013
Biology Department, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
Green sea urchins Strongylocentrotus droebachiensis along the coast of Nova Scotia, Canada, suffer mass mortalities from infection by the pathogenic amoeba Paramoeba invadens Jones, 1985. It has been speculated that P. invadens could be a form of Neoparamoeba pemaquidensis, a species associated with disease in S.
View Article and Find Full Text PDFAppl Environ Microbiol
July 1988
Biology Department, Dalhousie University, Halifax, Nova Scotia B3M 4J1, Canada.
Paramoeba invadens Jones 1985 is a pathogenic marine amoeba responsible for mass mortalities of sea urchins (Strongylocentrotus droebachiensis) of Nova Scotia between 1980 and 1983. A direct relationship between temperature and sea urchin paramoebiasis has been shown in previous laboratory and field studies. This study examined the effect of prey availability and temperature on the growth of P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!