Bapineuzumab and solanezumab for Alzheimer's disease: is the 'amyloid cascade hypothesis' still alive?

Expert Opin Biol Ther

McLean Hospital, Harvard Medical School, Department of Psychiatry, 115 Mill Street, Belmont, MA 02478, USA.

Published: July 2013

Introduction: The 'amyloid cascade hypothesis' remains the leading hypothesis to explain the pathophysiology of Alzheimer's disease (AD). Immunotherapeutic agents have been developed to remove the neurotoxic amyloid β42 protein and prevent the hypothesized amyloid β42-induced neurotoxicity and neurodegeneration. The most notable of these immunotherapies are bapineuzumab and solanezumab.

Areas Covered: This article briefly reviews the experimental agents in development for treatment of AD and then discusses the results of bapineuzumab and solanezumab in AD patients, as reported in preclinical studies, clinical trials and press releases.

Expert Opinion: Phase III trials showed that bapineuzumab failed to improve cognitive and functional performances in AD patients, and was associated with a high incidence of amyloid-related imaging abnormalities (ARIA). Solanezumab's two Phase III trials in AD patients failed to meet endpoints when analyzed independently. However, analysis of pooled data from both trials showed a significant reduction in cognitive decline in mild AD patients. The improvement was associated with an increase in plasma amyloid-β (Aβ) levels and a low incidence of ARIA in solanezumab-treated patients. The marginal benefits of solanezumab are encouraging to support continued evaluation in future studies, and offer small support in favor of the ongoing viability of the 'amyloid cascade hypothesis' of AD.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14712598.2013.789856DOI Listing

Publication Analysis

Top Keywords

'amyloid cascade
12
cascade hypothesis'
12
bapineuzumab solanezumab
8
alzheimer's disease
8
phase iii
8
iii trials
8
patients
5
bapineuzumab
4
solanezumab alzheimer's
4
disease 'amyloid
4

Similar Publications

Transthyretin Cardiac Amyloidosis: Current and Emerging Therapies.

Curr Cardiol Rep

January 2025

The Pauley Heart Center, Virginia Commonwealth University, 1200 East Broad Street West Hospital, 8th Floor, West Wing, Richmond, VA, 23231, USA.

Purpose Of Review: In this article, we describe current and newer TTR stabilizers, TTR silencers which include small interfering RNA agents (siRNA), antisense oligonucleotides (ASO) and CRISPR-Cas9 gene editing, and TTR depleters, which investigates the use of monoclonal antibodies to remove amyloid fibril deposits for patients with advanced disease.

Recent Findings: Once thought to be a rare and fatal condition, increased recognition, improved non-invasive diagnostic tools, and the explosive development of novel therapies, has transformed the landscape of transthyretin amyloid cardiomyopathy (ATTR-CM). Advances in cardiac imaging with respect to echocardiography, cardiac magnetic resonance imaging (CMR), and radionuclide bone scintigraphy has increased the diagnosis of ATTR-CM over the last twenty years.

View Article and Find Full Text PDF

The role of CXCL12/CXCR4/CXCR7 axis in cognitive impairment associated with neurodegenerative diseases.

Brain Behav Immun Health

February 2025

Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.

Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.

View Article and Find Full Text PDF

Background: The amyloid cascade hypothesis still dominates in Alzheimer's disease (AD), and the acceleration of the clearance efficiency of amyloid-β (Aβ) has been always considered as an effective treatment option to slow the occurrence and progression of AD.

Objective: This study aims to explore the role of zkscan3 and its related pathways in AD of the microglia-mediated pathogenesis, and whether the combined effect of drugs can exert neuroprotective function.

Methods: N9 mouse microglia and HT-22 mouse hippocampal neurons were randomly divided into 6 groups, qRT-PCR technique was used to detect the gene expression level of zkscan3 and the genes related to lysosome generation and function.

View Article and Find Full Text PDF

The role of lipid metabolism in cognitive impairment.

Arq Neuropsiquiatr

January 2025

Second Medical University, School of Clinical Medicine, Weifang Shandong Province, China.

Alzheimer's disease (AD), diabetic cognitive impairment (DCI), and vascular dementia (VD) are considered the most common causes of severe cognitive impairment in clinical practice. Numerous factors can influence their progression, and many studies have recently revealed that metabolic disorders play crucial roles in the progression of cognitive impairment. Mounting evidence indicate that the regulation of lipid metabolism is a major factor in maintaining brain homeostasis.

View Article and Find Full Text PDF

Curing Alzheimer's disease remains hampered by an incomplete understanding of its pathophysiology and progression. Exploring dysfunction in medial temporal lobe networks, particularly the anterior-temporal (AT) and posterior-medial (PM) systems, may provide key insights, as these networks exhibit functional connectivity alterations along the entire Alzheimer's continuum, potentially influencing disease propagation. However, the specific changes in each network and their clinical relevance across stages are not yet fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!