Understanding the crystallization kinetics of an amorphous drug is critical for the development of an amorphous solid dispersion (ASD) formulation. This paper examines the phase separation and crystallization of the drug AMG 517 in ASDs of varying drug load at various conditions of temperature and relative humidity using isothermal microcalorimetry. ASDs of AMG 517 in hydroxypropyl methylcellulose acetate succinate (HPMC-AS) were manufactured using a Buchi 290 mini spray dryer system. ASDs were characterized using modulated differential scanning calorimetry (mDSC) and scanning electron microscopy (SEM) prior to isothermal microcalorimetry evaluation, and crystallinity was measured using (19)F solid state nuclear magnetic resonance spectroscopy (SSNMR), before and after crystallization. The crystallization of ASDs of AMG 517 in HPMC-AS was significantly slowed by the presence of HPMC-AS polymer, indicating enhanced physical stability for the ASD formulations. A two-phase crystallization was observed by isothermal microcalorimetry at temperatures near the glass transition temperature (Tg), indicating a drug-rich phase and a miscible ASD phase. (19)F SSNMR showed that only partial crystallization of the drug occurred for the ASDs, suggesting a third phase which did not crystallize, possibly representing a thermodynamically stable, soluble component. Isothermal microcalorimetry provides important kinetic data for monitoring crystallization of the drug in the ASDs and, together with (19)F SSNMR, suggests a three-phase ASD system for AMG 517 in HPMC-AS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/mp300714g | DOI Listing |
Antibiotics (Basel)
January 2025
Department of Biomedical Engineering, University of Basel, Hegenheimermattweg 167B/C, CH-4123 Allschwil, Switzerland.
Orthopedic implant infections are rare but represent a significant problem for patients, surgeons, and the healthcare systems. This is because these infections cause severe and persistent pain and, in some cases, may require revision of the implant, among other things. Thus, there is strong interest in the use of antimicrobial coatings on orthopedic implants.
View Article and Find Full Text PDFChemphyschem
January 2025
Institute of Energy: Sustainability, Environment, and Equity (I:SEE), Stony Brook University, Stony Brook, New York, 11794, United States of America.
For batteries to function effectively all active material must be accessible requiring both electron and ion transport to each particle. A common approach to generating the needed conductive network is the addition of carbon to create a composite electrode. An alternative approach is the electrochemically induced formation of conductive reaction products where the electrochemically generated materials are in intimate contact with the active material contributing to effective connection of each active particle.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain. Electronic address:
Biofilm formation on biological and material surfaces represents a heavy health and economic burden for both patient and society. To contrast this phenomenon, medical devices combining antibacterial and pro-wound healing abilities are a promising strategy. In the present work, Xanthan gum/Guar gum (XG/GG)-based scaffolds were tuned with thymol and Zn to obtain wound dressings that combine antibacterial and antibiofilm properties and favour the healing process.
View Article and Find Full Text PDFAnaerobe
October 2023
UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, United Kingdom.
Objectives: In this work, an isothermal microcalorimeter was applied to investigate the antipathogenic activity of three probiotics (Lactobacillus acidophilus, Bifidobacterium lactis and Bifidobacterium bifidum) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli using the probiotics in mixed culture with the pathogenic microorganisms.
Methods: A microcalorimeter was used to monitor the growth of the microorganisms as pure cultures and as co-cultures at 37 °C. Relative growths of the probiotics and pathogenic species were determined after microcalorimetric measurements by serial dilution and plate incubation.
J Chem Inf Model
October 2024
Division of Pharmacy and Optometry, The University of Manchester, Manchester M13 9PT, U.K.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!