The mixture formed by charged (ionic) microgels in the presence of 1:1 added salt, with explicit consideration of a core-shell structure of the microgel particles, is studied. By solving numerically the three-component Ornstein-Zernike integral equations, the counter- and coion penetration inside the microgel network and the resulting effective microgel-microgel electrostatic interaction are calculated. This is done in the limit of very low microgel concentration, so that the resulting pair-wise effective potential is not affected by many-body particle-particle interactions. The ion-ion, microgel-ion, and microgel-microgel correlations are all treated within the Hypernetted-Chain approximation. The results obtained clearly show that the addition of salt to the microgel suspension has a deep impact on the screening of the bare charge of the particles, confirming an already well-known result: the strong reduction of the effective charge of the microgel occurring even for diluted electrolyte concentrations. We show that this effect becomes more important as we increase the shell size of the particle and derive a semi-empirical model for the effective charge as a function of the electrolyte concentration and the shell extension. The resulting microgel-microgel effective pair potential is analysed as a function of the shell extension and salt concentration. In all cases the interaction is a soft potential when particles overlap. For non-overlapping distances, our theoretical results indicate that microgel particles can be regarded as hard spherical colloids bearing an effective charge given by the net charge inside the particle and the microgel-microgel interaction shows a Yukawa-like behaviour as a function of the interparticle distance. It is also observed that increasing the bare-charge of the microgel induces a strong microgel-counterion coupling in the limit of very low electrolyte concentrations, which cannot be justified using linearized theories. This leads to an even more important adsorption of counterions inside the microgel network and to a reduction of the microgel-microgel effective repulsion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4798708 | DOI Listing |
Sci Rep
January 2025
Department of Chemical Engineering, University of Technology, Baghdad, Iraq.
Palygorskite exhibits distinctive morphological and textural characteristics due to its fibrous and micropore nature. This research experimentally investigates the microstructure of palygorskite and how acid treatment changes the fibrous shape and ability to adsorb. Acetic and hydrochloric acid were used to study the effect of acid on palygorskite fibrous morphology.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Department of Chemistry, Faculty of Basic Sciences, Ayatollah Boroujerdi University, Boroujerd, Iran.
A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005-1892, United States.
The removal of selenite (SeO) from water is challenging due to the risk of secondary pollutants. To address this, we developed RuO-based nanocatalysts on the titanium plate (RuO/TP) for direct electrochemical reduction of Se(IV) to elemental selenium [Se(0)]. Optimizing Sn doping in RuO nanoparticles to induce charge redistribution enabled the RuSnO/TP catalyst to achieve ∼90% Se(IV) removal across concentrations of 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science &Technology Center, Chengdu 610213, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China. Electronic address:
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most prevalent bacterial pathogens. The multi-drug resistance and strong biofilm-forming ability make the treatment of MRSA infections challenging. It is urgent to develop antibiotic-free, noninvasive and effective strategies against MRSA infections.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China. Electronic address:
Rutin, a promising bioactive hydrophobic compound, suffers from poor physicochemical stability, resulting in low bioavailability. Herein, we used positively charged chitosan and negatively charged fucoidan as biopolymers coating rutin-nanoliposome (RNL) via electrostatic layer-by-layer self-assembly approach to prepare fucoidan/chitosan-coated rutin-nanoliposome (FC-RNL). The FC-RNL exhibited the encapsulation efficiency of 77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!