To obtain the characteristic variation of structure and functional groups of α-fetoprotein (AFP) DNA irradiated by iodine-125((125)I), the AFP antisense oligonucleotide labeled with various radioactivity dose (125)I was mixed with the AFP DNA in a simulated polymerase chain reaction temperature condition. After the mixtures were irradiated by the (125)I from 2 to 72 hours, the mutation of the biogenic conformation and functional groups of the irradiated DNA were investigated using laser Raman spectroscopy. The shifted peak and the decreased intensity of the characteristic Raman spectra were found, which demonstrated that the structure of the phosphodiester linkage was broke, the pyridine and purine bases in DNA emerged and damaged. The model of gene conformation changed from form B to form C spectrum after the nanometer-range irradiation with (125)I from 2 to 24 hours. The damage of local pyridine and purine bases gradually increased along with the accumulation of irradiation, and the bases and ribosome were finally dissociated and stacked.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3615693PMC
http://dx.doi.org/10.1089/cbr.2012.1231DOI Listing

Publication Analysis

Top Keywords

characteristic variation
8
functional groups
8
afp dna
8
125i hours
8
pyridine purine
8
purine bases
8
dna
5
variation α-fetoprotein
4
α-fetoprotein dna
4
dna nanometer-range
4

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress.

Int J Biol Macromol

January 2025

Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:

B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.

View Article and Find Full Text PDF

The potential function of chalcone isomerase (CHI) gene on flavonoid accumulation in Amomum tsao-ko fruit by transcriptome and metabolome.

Int J Biol Macromol

January 2025

Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China. Electronic address:

Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol.

View Article and Find Full Text PDF

Single nucleotide variations (SNVs) and polymorphisms (SNPs) are characteristic biomarkers in various biological contexts, including pathogen drug resistances and human diseases. Tools that lower the implementation barrier of molecular SNV detection methods would provide greater leverage of the expanding SNP/SNV database. The oligonucleotide ligation assay (OLA) is a highly specific means for detection of known SNVs and is especially powerful when coupled with polymerase chain reaction (PCR).

View Article and Find Full Text PDF

The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!