GLP-1 and peptide YY secretory response after fat load is impaired by insulin resistance, impaired fasting glucose and type 2 diabetes in morbidly obese subjects.

Clin Endocrinol (Oxf)

Department of Endocrinology, Virgen de la Victoria University Hospital, Málaga, Spain; Research laboratory, Virgen de la Victoria University Hospital, Málaga, Spain; Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERObn CB06/003), Instituto de Salud Carlos III, Madrid, Spain.

Published: May 2014

Objective: Both glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are gut hormones involved in energy homoeostasis. Obesity, insulin resistance and hyperglycaemia are significant confounders when GLP-1 and PYY secretion is assessed. Thus, we evaluated GLP-1 and PYY response after fat load in morbidly obese patients with different degrees of insulin resistance and glycemic status.

Design: We studied 40 morbidly obese subjects (mean age, 40·6 ± 1·3 years; mean BMI, 53·1 ± 1·2 kg/m(2) ) divided into groups according to their glycemic status: normal fasting glucose (NFG) group, impaired fasting glucose (IFG) group and type 2 diabetes mellitus (T2D) group. NFG patients were additionally subclassified, according to the homoeostasis model assessment of insulin resistance (HOMAIR ), into a low insulin-resistance (LIR) group (HOMAIR <3·9) or a high insulin-resistance (HIR) group (HOMAIR ≥3·9).

Measurements: Lipid emulsion was administered orally and measurements made at baseline and 180 min postprandially of levels of GLP-1, PYY, insulin, glucose, free fatty acids, triglycerides and leptin.

Results: At the 180-minute postprandial reading, GLP-1 and PYY had increased in LIR-NFG subjects (41·84%, P = 0·01; 35·7%, P = 0·05; respectively), whereas no changes were observed in HIR-NFG, IFG or T2D subjects.

Conclusions: These results suggest that in morbidly obese subjects, both insulin resistance and abnormal glucose metabolism (IFG or T2D) impair the GLP-1 and PYY response to fat load. The implications of this attenuated enteroendocrine response should be elucidated by further studies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cen.12221DOI Listing

Publication Analysis

Top Keywords

insulin resistance
16
fasting glucose
12
morbidly obese
12
glp-1 peptide
8
response fat
8
fat load
8
impaired fasting
8
type diabetes
8
obese subjects
8
glp-1 pyy
8

Similar Publications

Background: The association between serum uric acid (SUA) and dyslipidaemia is still unclear in patients with type 2 diabetes mellitus (T2DM). This study aimed to examine the association between SUA and dyslipidaemia and to explore whether there is an optimal SUA level corresponding to the lower risk of suffering from dyslipidaemia.

Research Design And Methods: This cross-sectional study included 1036 inpatients with T2DM and the clinical data were extracted from the hospital medical records.

View Article and Find Full Text PDF

The growing range of complications of diabetes mellitus.

Trends Endocrinol Metab

January 2025

School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.

With the rising prevalence of type 2 diabetes mellitus (T2DM) and obesity, several previously under-recognised complications associated with T2DM are becoming more evident. The most common of these emerging complications are metabolic dysfunction-associated steatotic liver disease (MASLD), cancer, dementia, sarcopenia, and frailty, as well as other conditions involving the lung, heart, and intestinal tract. Likely causative factors are chronic inflammation and insulin resistance, whereas blood glucose levels appear to play a lesser role.

View Article and Find Full Text PDF

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Statins and non-alcoholic fatty liver disease: A concise review.

Biomed Pharmacother

January 2025

Laboratory of Clinical and Experimental Physiopathology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.

Non-alcoholic fatty liver disease (NAFLD) is a common hepatic manifestation of metabolic syndrome affecting 20-30 % of the adult population worldwide. This disease, which includes simple steatosis and non-alcoholic steatohepatitis, poses a significant risk for cardiovascular and metabolic diseases. Lifestyle modifications are crucial in the treatment of NAFLD; however, patient adherence remains challenging.

View Article and Find Full Text PDF

Type 2 Diabetes Mellitus Exacerbates Pathological Processes of Parkinson's Disease: Insights from Signaling Pathways Mediated by Insulin Receptors.

Neurosci Bull

January 2025

Center for Translational Neuromedicine and Neurology, School of Life Sciences, Institute for Brain Sciences Research, Henan University, Huaihe Hospital of Henan University, Kaifeng, 475004, China.

Parkinson's disease (PD), a chronic and common neurodegenerative disease, is characterized by the progressive loss of dopaminergic neurons in the dense part of the substantia nigra and abnormal aggregation of alpha-synuclein. Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by chronic insulin resistance and deficiency in insulin secretion. Extensive evidence has confirmed shared pathogenic mechanisms underlying PD and T2DM, such as oxidative stress caused by insulin resistance, mitochondrial dysfunction, inflammation, and disorders of energy metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!