Cerium is widely used in many aspects of modern society, including agriculture, industry and medicine. It has been demonstrated to enter the ecological environment, is then transferred to humans through food chains, and causes toxic actions in several organs including the brain of animals. However, the neurotoxic molecular mechanisms are not clearly understood. In this study, mice were exposed to 0.5, 1, and 2 mg/kg BW cerium chloride (CeCl(3)) for 90 consecutive days, and their learning and memory ability as well as hippocampal gene expression profile were investigated. Our findings suggested that exposure to CeCl(3) led to hippocampal lesions, apoptosis, oxidative stress and impairment of spatial recognition memory. Furthermore, microarray data showed marked alterations in the expression of 154 genes involved in learning and memory, immunity and inflammation, signal transduction, apoptosis and response to stress in the 2 mg/kg CeCl(3) exposed hippocampi. Specifically, the significant up-regulation of Axud1, Cdc37, and Ube2v1 caused severe apoptosis, and great suppression of Adcy8, Fos, and Slc5a7 expression led to impairment of mouse cognitive ability. Therefore, Axud1, Cdc37, Ube2v1, Adcy8, Fos, and Slc5a7 may be potential biomarkers of hippocampal toxicity caused by CeCl3 exposure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616000 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060092 | PLOS |
CNS Neurosci Ther
January 2025
Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).
Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).
Over the past decade, there has been a global increase in the incidence of skin cancers. Skin cancer has serious consequences if left untreated, potentially leading to more advanced cancer stages. In recent years, deep learning based convolutional neural network have emerged as powerful tools for skin cancer detection.
View Article and Find Full Text PDFFood Sci Nutr
January 2025
Department of Pathology and Pathophysiology, School of Medicine Nanjing University of Chinese Medicine Nanjing China.
Creatine (Cr) is recognized for its role in enhancing cognitive functions through the phosphocreatine (pCr)-creatine kinase system involved in brain energy homeostasis. It is reversibly converted into pCr by creatine kinase (CK). A brain-specific isoform of CK, known as CK-BB, is implicated in the brain's energy metabolism.
View Article and Find Full Text PDFNarra J
December 2024
Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines.
Sodium metabisulfite is widely used as a preservative in many food and beverage products, yet its potential effects on cognitive and motor functions at low concentrations remain poorly understood. Evaluating learning, short-term memory, and motor activity is essential, as these functions are critical indicators of neurological health and could be impacted by low-level exposure to sodium metabisulfite. The aim of this study was to investigate the effects of sublethal concentrations of sodium metabisulfite on cognitive and motor functions using (fruit flies) as the model organism.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!