AI Article Synopsis

  • The Y chromosome in horses reveals limited genetic diversity among males, contrasting with the rich variety found in their mitochondrial DNA.
  • By using advanced sequencing methods, researchers identified the first polymorphic Y-chromosomal markers, showing only six distinct haplotypes (HT) in modern horses, all tracing back to a common ancestor.
  • The influence of popular stallions, particularly the Thoroughbred "Eclipse," has significantly shaped the Y-chromosomal variation in contemporary horse breeds, often leading to the replacement of native Y chromosomes with those of Thoroughbreds.

Article Abstract

The paternally inherited Y chromosome displays the population genetic history of males. While modern domestic horses (Equus caballus) exhibit abundant diversity within maternally inherited mitochondrial DNA, no significant Y-chromosomal sequence diversity has been detected. We used high throughput sequencing technology to identify the first polymorphic Y-chromosomal markers useful for tracing paternal lines. The nucleotide variability of the modern horse Y chromosome is extremely low, resulting in six haplotypes (HT), all clearly distinct from the Przewalski horse (E. przewalskii). The most widespread HT1 is ancestral and the other five haplotypes apparently arose on the background of HT1 by mutation or gene conversion after domestication. Two haplotypes (HT2 and HT3) are widely distributed at high frequencies among modern European horse breeds. Using pedigree information, we trace the distribution of Y-haplotype diversity to particular founders. The mutation leading to HT3 occurred in the germline of the famous English Thoroughbred stallion "Eclipse" or his son or grandson and its prevalence demonstrates the influence of this popular paternal line on modern sport horse breeds. The pervasive introgression of Thoroughbred stallions during the last 200 years to refine autochthonous breeds has strongly affected the distribution of Y-chromosomal variation in modern horse breeds and has led to the replacement of autochthonous Y chromosomes. Only a few northern European breeds bear unique variants at high frequencies or fixed within but not shared among breeds. Our Y-chromosomal data complement the well established mtDNA lineages and document the male side of the genetic history of modern horse breeds and breeding practices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3616054PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060015PLOS

Publication Analysis

Top Keywords

horse breeds
16
modern horse
12
horse chromosome
8
breeds
8
genetic history
8
high frequencies
8
horse
7
modern
7
identification genetic
4
genetic variation
4

Similar Publications

Genomic-Inbreeding Landscape and Selection Signatures in the Polo Argentino Horse Breed.

Int J Mol Sci

December 2024

Departamento de Genética, Universidad de Córdoba, CN IV KM 396 Edificio Gregor Mendel, 14007 Córdoba, Spain.

Analyzing genetic variability and inbreeding trends is essential for effective breed management in animal populations. To this, the characterization of runs of homozygosity (ROH) provides a good genomic approach to study the phenomena. The Polo Argentino (PA) breed, globally recognized as the best adapted to playing polo, is known for its strong influence of Thoroughbreds, intense selective breeding, and extensive use of reproductive biotechnologies.

View Article and Find Full Text PDF

Understanding social relationships in at-risk species held in captivity is vital for their welfare and potential reintroduction. In social species like the Przewalski's horse (), daily time allocation and space use may be influenced by social structure and, in turn, reflect welfare. Here, we identify social relationships, time budgets, and spatial distribution of a group of nine older (aged 6-21 years) male Przewalski's horses living in a non-breeding (bachelor) group.

View Article and Find Full Text PDF

Copy number variations (CNVs) have become widely acknowledged as a significant source of genomic variability and phenotypic variance. To understand the genetic variants in horses, CNVs from six Indian horse breeds, Manipuri, Zanskari, Bhutia, Spiti, Kathiawari and Marwari were discovered using Axiom Equine Genotyping Array. These breeds differed in agro-climatic adaptation with distinct phenotypic characters.

View Article and Find Full Text PDF

Background: The optimal amount of vitamin D required for the proper functioning of the immune system differs from the amount necessary for bone homeostasis. Furthermore, vitamin D metabolism varies among horses. Nevertheless, there is a dearth of information regarding reference values for vitamin D in horses, particularly in the Turkmen breed.

View Article and Find Full Text PDF

Background: Musculoskeletal injuries (MSI) are a major concern in the horse racing industry, often leading to career-ending outcomes. Contributing factors include conformation, limb and joint defects, hoof structure, age, and hard track surfaces.

Objectives: This study aimed to evaluate the distribution of MSI in Thoroughbred and Arabian racehorses during racing and training, categorised by breed and track surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!