Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150-200 μmol m(-2) s(-1)) or moderate (600-800 μmol m(-2) s(-1)) light conditions. Results were compared with rice plants grown in high (1200-2200 μmol m(-2) s(-1)) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550674 | PMC |
http://dx.doi.org/10.1007/s12298-010-0024-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!