The extent of damage caused to the photosynthetic machinery of 10-d-old wheat seedlings by short-term exposure to mild heat, their capacity to recover from it and the possible roles of H2O2, SOD, catalase and ascorbate peroxidase on the recovery process were investigated. Seedlings were subjected to heat treatments at 40/42/44 °C for 20 min in the dark and allowed to grow for 72 h in light of different irradiances (40-800 μE m(-2) s(-1)) at 20 °C for recovery from heat induced damage. Complete or partial recovery of photosynthetic activities was observed in the seedlings treated at 40 °C and 42 °C, but not at 44 °C. Our data suggest that the balance between (pro)oxidant and antioxidant levels poised by heat stress subsequent light is the crucial factor for the extent of recovery from heat induced damage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550370PMC
http://dx.doi.org/10.1007/s12298-009-0013-yDOI Listing

Publication Analysis

Top Keywords

recovery photosynthetic
8
photosynthetic machinery
8
wheat seedlings
8
recovery heat
8
heat induced
8
induced damage
8
°c °c
8
recovery
5
heat
5
°c
5

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Photosynthetic bacteria (PSB) excel in wastewater treatment by removing pollutants and generating biomass but are challenging to optimize due to complex operational and environmental interactions. Neural Ordinary Differential Equations, Elastic Net, Stacking, and Categorical Boosting were applied as artificial intelligence methods to predict chemical oxygen demand (COD) removal efficiency, biomass productivity, biomass yield, and energy yield. Among these, the Stacking model demonstrated superior predictive performance across all targets.

View Article and Find Full Text PDF

Modulation of Zn Ion Toxicity in L. by Phycoremediation.

Plants (Basel)

January 2025

Department of Plant Physiology, Faculty of Biology, Sofia University, 8 Dragan Tsankov Bul., 1164 Sofia, Bulgaria.

Microalgae offer a promising alternative for heavy metal removal, and the search for highly efficient strains is ongoing. This study investigated the potential of two microalgae, sp. BGV (Chlorophyta) and Schwabe & Simonsen (Cyanoprokaryota), to bind zinc ions (Zn⁺) and protect higher plants.

View Article and Find Full Text PDF

Wheat, a staple food crop globally, faces the challenges of limited water resources and sustainable soil management practices. The pivotal elements of the current study include the integration of activated acacia biochar (AAB) in wheat cultivation under varying irrigation regimes (IR). A field trial was conducted in the Botanical Garden, University of the Punjab, Lahore during 2023-2024, designed as a split-split-plot arrangement with RCBD comprising three AAB levels (0T, 5T, and 10T, T = tons per hectare) three wheat cultivars (Dilkash-2020, Akbar-2019, and FSD-08) receiving five IR levels (100%, 80%, 70%, 60%, and 50% field capacity).

View Article and Find Full Text PDF

Diatoms dominate phytoplankton communities in turbulent waters, where light fluctuations can be frequent and intense. Due to this complex environment, these heterokont microalgae display remarkable photoprotection strategies, including a fast Non-Photochemical Quenching (NPQ). However, in nature, several abiotic parameters (such as temperature) can influence the response of photosynthetic organisms to light stress in a synergistic or antagonistic manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!