Design of tandem genes cluster and expression vector for biosynthesis of soybean isoflavones.

Physiol Mol Biol Plants

China-UK HUST-RRes Genetics Engineering and Genomics Joint Laboratory, Huazhong University of Science and Technology, 430074 Wuhan, China.

Published: January 2009

A tandem gene cluster CHS-CHI-IFS (rIFS) for secondary metabolites of plant isoflavones was constructed by using the chalcone synthase (CHS), chalcone isomerase (CHI), and isoflavone synthase (IFS) (GenBank accession numbers EU526827, EU526829, EU526830) in a single recombination event with the pET22b vector. The resulting expression vector pET-rIFS was heterogeneously expressed. The highlights of the vector include ease of handling, high efficiency and universal application among diverse plant species. To the best of our knowledge, this is the first attempt at developing a novel method of constructing tandem gene cluster for future research involving secondary metabolism of isoflavones and isoflavones engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550378PMC
http://dx.doi.org/10.1007/s12298-009-0011-0DOI Listing

Publication Analysis

Top Keywords

expression vector
8
tandem gene
8
gene cluster
8
design tandem
4
tandem genes
4
genes cluster
4
cluster expression
4
vector
4
vector biosynthesis
4
biosynthesis soybean
4

Similar Publications

A splice donor in influences keratinocyte immortalization by beta-HPV49.

J Virol

January 2025

Institute for Medical Virology and Epidemiology of Viral Diseases, University of Tuebingen, Tuebingen, Germany.

Human papillomaviruses (HPV) from the genus beta have been implicated in the development of cutaneous squamous cell cancer in and organ transplant patients. In contrast to alpha-high-risk HPV, which cause ano-genital and oropharyngeal cancers, beta-HPV replication is not well understood. The beta-HPV49 transcriptome was analyzed by RNA sequencing using stable keratinocyte cell lines maintaining high levels of extrachromosomally replicating E8- genomes, which can be established due to a lack of the viral E8^E2 repressor protein.

View Article and Find Full Text PDF

Functional genomic approaches have been effective at uncovering the function of uncharacterized genes and identifying new functions for known genes. Often these approaches rely on an in vivo screen or selection to associate genes with a phenotype of interest. These selections and screens are dependent upon the expression of proteins encoded in genomic DNA from an expression vector, such as a plasmid.

View Article and Find Full Text PDF

Mineral Stress Drives Loss of Heterochromatin: An Early Harbinger of Vascular Inflammaging and Calcification.

Circ Res

January 2025

British Heart Foundation Centre for Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, James Black Centre, King's College London, United Kingdom (C.Y.H., M.-Y.W., J.T., S.A., L.D., G.A., R.H., C.M.S.).

Background: Vascular calcification is a detrimental aging pathology markedly accelerated in patients with chronic kidney disease. Prelamin A is a biomarker of vascular smooth muscle cell aging that accelerates calcification however the mechanisms remain undefined.

Methods: Vascular smooth muscle cells were transduced with prelamin A using an adenoviral vector and epigenetic modifications were monitored using immunofluorescence and targeted polymerase chain reaction array.

View Article and Find Full Text PDF

Background: Chimeric antigen receptor (CAR)-T-cell therapy is a breakthrough in the field of cancer immunotherapy, wherein T cells are genetically modified to recognize and attack cancer cells. Delivery of the CAR gene is a critical step in this therapy and is usually achieved by transducing patient T cells with a lentiviral vector (LV). Because the LV is an essential component of CAR-T manufacturing, there is a need for simple bioassays that reflect the mechanism of action (MOA) of the LV and can measure LV potency with accuracy and specificity.

View Article and Find Full Text PDF

Background: Cervical screening, aimed at detecting precancerous lesions and preventing cancer, is based on cytology and HPV testing. Both methods have limitations, the main ones being the variable diagnostic sensitivity of cytology and the moderate specificity of HPV testing. Various molecular biomarkers are proposed in recent years to improve cervical cancer management, including a number of mRNAs encoded by human genes involved in carcinogenesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!