Background: Loss of the endothelium and its replacement by a thick thrombus are structural features of human abdominal aortic aneurysms (AAAs). In AAAs, the relationship between aortic diameter expansion, the presence of thrombus, and the lack of endothelial cells (ECs) remains unexplored. We hypothesized that reendothelialization by cell therapy would modulate aortic wall destruction and ultimately stabilize AAAs. We evaluated the impact of local seeding of rat aortic ECs or peripheral blood-derived outgrowth ECs on AAA evolution.
Methods And Results: Rat aortic ECs (n=30) or serum-free medium (controls; n=29) were seeded endovascularly immediately (day 0) or 14 days after surgery in the rat xenograft model. Rat aortic EC seeding prevented AAA formation and stabilized formed AAAs at 28 days (diameter increase at day 0+28, 51±6% versus 83±6%; day 14+28, -1±4% versus 22±6% in rat aortic ECs and controls, respectively; P<0.01). This stabilizing effect was associated with the reestablishment of the endothelial lining, the suspension of proteolysis, and the reconstitution of new aortic wall rich in smooth muscle cells and extracellular matrix. Transplanted rat aortic ECs did not participate directly in aortic wall repair but exerted their healing properties through paracrine mechanisms involving the upregulation of endothelium-derived stabilizing factors and the recruitment of resident vascular cells. In rats, the transplantation of outgrowth ECs (n=7) significantly reduced by 30% the progression of AAAs and restored the abluminal endothelium at 28 days compared with controls (n=9).
Conclusion: Our study demonstrates the potential of restoring the endothelial lining to control AAA dynamics and designates ECs as an efficient therapy to stop AAA expansion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001677 | DOI Listing |
Nutrients
December 2024
Department of Pharmacognosy, Faculty of Pharmacy, "Iuliu Haţieganu" University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania.
Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.
View Article and Find Full Text PDFNutrients
December 2024
Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
Background: Atherosclerotic calcification (AC) is a common feature of atherosclerotic cardiovascular disease. β-Hydroxybutyrate (BHB) has been identified as a molecule that influences cardiovascular disease. However, whether BHB can influence AC is still unknown.
View Article and Find Full Text PDFNutrients
December 2024
Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.
Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.
View Article and Find Full Text PDFNutrients
December 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.
View Article and Find Full Text PDFCells
January 2025
Institute of Anatomy & Cell Biology, Faculty of Medicine, Justus-Liebig-University, Aulweg 123, 35392 Giessen, Germany.
Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!