We present an experimental observation of an oscillating Kerr cavity soliton, i.e., a time-periodic oscillating one-dimensional temporally localized structure excited in a driven nonlinear fiber cavity with a Kerr-type nonlinearity. More generally, these oscillations result from a Hopf bifurcation of a (spatially or temporally) localized state in the generic class of driven dissipative systems close to the 1 : 1 resonance tongue. Furthermore, we theoretically analyze dynamical instabilities of the one-dimensional cavity soliton, revealing oscillations and different chaotic states in previously unexplored regions of parameter space. As cavity solitons are closely related to Kerr frequency combs, we expect these dynamical regimes to be highly relevant for the field of microresonator-based frequency combs.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.009180DOI Listing

Publication Analysis

Top Keywords

kerr cavity
8
cavity solitons
8
cavity soliton
8
temporally localized
8
frequency combs
8
cavity
5
dynamics one-dimensional
4
one-dimensional kerr
4
solitons experimental
4
experimental observation
4

Similar Publications

Self-induced optical non-reciprocity.

Light Sci Appl

January 2025

CAS Key Laboratory of Quantum Information & CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, 230026, China.

Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field has attracted increasing research interest in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach.

View Article and Find Full Text PDF

Theory and application of cavity solitons in photonic devices.

Philos Trans A Math Phys Eng Sci

December 2024

SUPA and Department of Physics, University of Strathclyde, 107 Rottenrow, Glasgow, Scotland G4 0NG, UK.

Driven optical cavities containing a nonlinear medium support stable dissipative solitons, cavity solitons, in the form of bright or dark spots of light on a uniformly-lit background. Broadening effects due to diffraction or group velocity dispersion are balanced by the nonlinear interaction with the medium while cavity losses balance the input energy. The history, properties, physical interpretation and wide application of cavity solitons are reviewed.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have identified a new type of bright pulse in Kerr-Gires-Tournois interferometers that exists in a normal dispersion regime.
  • Unlike traditional domain wall locking scenarios, these pulses exhibit unique shapes and increased peak intensities beyond typical limits.
  • They remain stable across a wide range of injection fields, indicating promising applications for generating optical frequency combs (OFC).
View Article and Find Full Text PDF

Harmonic quantum cascade laser terahertz frequency combs enabled by multilayer graphene top-cavity scatters.

Nanophotonics

April 2024

NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127, Pisa, Italy.

Optical frequency comb synthesizers, operating in the harmonic regime, are metrological sources in which the emitted optical power is concentrated in a few modes, spaced by several multiples of the cavity free spectral range (FSR). This behavior reflects in a large correlation degree and, in principle, in an increased optical power per mode. In miniaturized quantum cascade lasers (QCLs), harmonic frequency combs (HFCs) are hence particularly attracting to explore quantum correlation effects between adjacent harmonic modes, enabled by the inherently large gain media third-order Kerr nonlinearity, even if controlled generation of stable HFCs of predefined order, is typically demanding in such electrically pumped sources.

View Article and Find Full Text PDF
Article Synopsis
  • * The study reports the first experimental generation of GQKSs from a fiber laser, revealing that their temporal and spectral characteristics are influenced by factors like quadratic dispersion, pump power, and intra-cavity birefringence.
  • * Different soliton states, such as harmonic mode-locking and soliton bunches, were observed through careful manipulation of quadratic and quartic dispersion values, helping to deepen understanding of
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!