Electro-optical switching by liquid-crystal controlled metasurfaces.

Opt Express

Nonlinear Physics Centre and Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia.

Published: April 2013

We study the optical response of a metamaterial surface created by a lattice of split-ring resonators covered with a nematic liquid crystal and demonstrate millisecond timescale switching between electric and magnetic resonances of the metasurface. This is achieved due to a high sensitivity of liquid-crystal molecular reorientation to the symmetry of the metasurface as well as to the presence of a bias electric field. Our experiments are complemented by numerical simulations of the liquid-crystal reorientation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.008879DOI Listing

Publication Analysis

Top Keywords

electro-optical switching
4
switching liquid-crystal
4
liquid-crystal controlled
4
controlled metasurfaces
4
metasurfaces study
4
study optical
4
optical response
4
response metamaterial
4
metamaterial surface
4
surface created
4

Similar Publications

Pseudomorphic Transformation in Nanostructured Thiophene-Based Materials.

ACS Nano

January 2025

Consiglio Nazionale delle Ricerche (CNR) - Istituto per la Sintesi Organica e la Fotoreattività (ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.

This study reveals the capability of nanostructured organic materials to undergo pseudomorphic transformations, a ubiquitous phenomenon occurring in the mineral kingdom that involves the replacement of a mineral phase with a new one while retaining the original shape and volume. Specifically, it is demonstrated that the postoxidation process induced by HOF·CHCN on preformed thiophene-based 1D nanostructures preserves their macro/microscopic morphology while remarkably altering their electro-optical properties by forming a new oxygenated phase. Experimental evidence proves that this transformation proceeds via an interface-coupled dissolution-precipitation mechanism, leading to the growth of a porous oxidized shell that varies in thickness with exposure time, enveloping the pristine smooth core.

View Article and Find Full Text PDF

In this paper, we propose a novel structure of anisotropic graphene-based hyperbolic metamaterial (AGHMM) sandwiched as a defect between two one-dimensional photonic crystals (PCs) in the terahertz (THz) region. The proposed structure is numerically simulated and analyzed using the transfer matrix method, effective medium theory and three-dimensional finite-difference time-domain. The defect layer of AGHMM consists of graphene sheets separated by subwavelength dielectric spacers.

View Article and Find Full Text PDF

Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical-optical functionality that bridges the efficiency of electronics and the bandwidth of photonics.

View Article and Find Full Text PDF

Active Huygens' metasurface based on grown conductive polymer.

Nanophotonics

January 2024

School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia.

Article Synopsis
  • Active metasurfaces enable advanced light manipulation for applications like displays, holograms, and sensors, but previous designs have struggled to meet all key performance metrics required for practical use.
  • The newly developed active Huygens' metasurface, made from conductive polyaniline (PANI), notably improves performance with a switching speed of 60 fps, over 2000 cycles of durability, and high modulation contrast exceeding 1400%.
  • This PANI-based design offers efficient electrical control and can be integrated into other systems, moving us closer to reliable and compact optical devices for future technologies.
View Article and Find Full Text PDF

Nematic liquid crystals exhibit nanosecond electro-optic response to an applied electric field which modifies the degree of orientational order without realigning the molecular orientation. However, this nanosecond electrically modified order parameter (NEMOP) effect requires high driving fields, on the order of 10 V/m for a modest birefringence change of 0.01.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!