Efficient photoacoustic emission from Au nanoparticles on a porous SiO(2) layer was investigated experimentally and theoretically. The Au nanoparticle arrays/porous SiO(2)/SiO(2)/Ag mirror sandwiches, namely, local plasmon resonators, were prepared by dynamic oblique deposition (DOD). Photoacoustic measurements were performed on the local plasmon resonators, whose optical absorption was varied from 0.03 (3%) to 0.95 by varying the thickness of the dielectric SiO(2) layer. The sample with high absorption (0.95) emitted a sound that was eight times stronger than that emitted by graphite (0.94) and three times stronger than that emitted by the sample without the porous SiO(2) layer (0.93). The contribution of the porous SiO(2) layer to the efficient photoacoustic emission was analyzed by means of a numerical method based on a one-dimensional heat transfer model. The result suggested that the low thermal conductivity of the underlying porous layer reduces the amount of heat escaping from the substrate and contributes to the efficient photoacoustic emission from Au nanoparticle arrays. Because both the thermal conductivity and the spatial distribution of the heat generation can be controlled by DOD, the local plasmon resonators produced by DOD are suitable for the spatio-temporal modulation of the local temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.21.008689 | DOI Listing |
J Cardiovasc Dev Dis
December 2024
Department of Medicine, University of California, 650 Charles E Young Dr. S, Center for Health Sciences, Room A2-237, Los Angeles, CA 90095, USA.
The detection and assessment of atherosclerosis and cardiovascular calcification can inform risk stratification and therapies to reduce cardiovascular morbidity and mortality. In this review, we provide an overview of current and emerging imaging techniques for assessing atherosclerosis and cardiovascular calcification in animal models. Traditional imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), offer non-invasive approaches of visualizing atherosclerotic calcification in vivo; integration of these techniques with positron emission tomography (PET) imaging adds molecular imaging capabilities, such as detection of metabolically active microcalcifications with F-sodium fluoride.
View Article and Find Full Text PDFTalanta
December 2024
Department of Hepato-Pancreato-Biliary Surgery, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China. Electronic address:
The hypoxic environment in tumors is closely linked to tumor structure, function, dissemination, invasion, metastasis, and drug resistance. Nitroreductase (NTR) is often recognized as a biomarker to evaluate the hypoxia degree for tumor cells. Traditional detection methods such as PET, MRI and multispectral photoacoustic tomography have limitations.
View Article and Find Full Text PDFExtracell Vesicles Circ Nucl Acids
December 2023
School of Bioscience and Technology, Weifang Medical University, Weifang 261053, Shandong, China.
Cells have the capability to discharge extracellular vesicles (EVs) into a range of bodily fluids. Extracellular vesicles (EVs) encapsulate biological molecules such as proteins and nucleic acids, playing a role in facilitating cell-cell communication. They actively engage in a myriad of physiological and pathological processes.
View Article and Find Full Text PDFPhotoacoustics
October 2024
Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Jhalwa, Prayagraj, 211015, U.P., India.
Assessing the blood hematocrit (Hct) and oxygenation (SO ) levels are essential for diagnosing numerous blood-related diseases. This study examines the ability of the photoacoustic (PA) technique for quantitative evaluation of these parameters. We conducted the Monte Carlo and k-Wave simulations to compute PA signals at four different optical wavelengths from test blood samples followed by rigorous in vitro experiments.
View Article and Find Full Text PDFProg Biomed Eng (Bristol)
August 2024
CSIR-National Physical Laboratory, Dr K.S. Krishnan Road, New Delhi 110012, India.
The biomedical applications of metal dichalcogenides (MDCs) nanomaterials (NMs) are an emerging discipline because of their unique attributes like high surface-to-volume ratio, defect sites, superb catalytic performance, and excitation-dependent emission, which is helpful in bio-imaging and cancer cell killing. Due to the compatibility of sensing material with cells and tissues, MoS, WS, and SnSNMs have piqued the interest of researchers in various biomedical applications like photothermal therapy used in killing cancer cells, drug delivery, photoacoustic tomography (PAT) used in bio-imaging, nucleic acid or gene delivery, tissue engineering, wound healing, etc. Furthermore, these NMs' functionalization and defect engineering can enhance therapeutic efficacy, biocompatibility, high drug transport efficiency, adjustable drug release, dispersibility, and biodegradability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!