Ultra-high-speed optical communication systems which can support ≥ 1Tb/s per channel transmission will soon be required to meet the increasing capacity demand. However, 1Tb/s over a single carrier requires either or both a high-level modulation format (i.e. 1024QAM) and a high baud rate. Alternatively, grouping a number of tightly spaced "sub-carriers" to form a terabit superchannel increases channel capacity while minimizing the need for high-level modulation formats and high baud rate, which may allow existing formats, baud rate and components to be exploited. In ideal Nyquist-WDM superchannel systems, optical subcarriers with rectangular spectra are tightly packed at a channel spacing equal to the baud rate, thus achieving the Nyquist bandwidth limit. However, in practical Nyquist-WDM systems, precise electrical or optical control of channel spectra is required to avoid strong inter-channel interference (ICI). Here, we propose and demonstrate a new "super receiver" architecture for practical Nyquist-WDM systems, which jointly detects and demodulates multiple channels simultaneously and mitigates the penalties associated with the limitations of generating ideal Nyquist-WDM spectra. Our receiver-side solution relaxes the filter requirements imposed on the transmitter. Two joint DSP algorithms are developed for linear ICI cancellation and joint carrier-phase recovery. Improved system performance is observed with both experimental and simulation data. Performance analysis under different system configurations is conducted to demonstrate the feasibility and robustness of the proposed joint DSP algorithms.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.008342DOI Listing

Publication Analysis

Top Keywords

baud rate
16
optical communication
8
communication systems
8
high-level modulation
8
high baud
8
ideal nyquist-wdm
8
practical nyquist-wdm
8
nyquist-wdm systems
8
joint dsp
8
dsp algorithms
8

Similar Publications

Commonly used linear equalizers in optical transmissions may induce in-band noise enhancement in the high-frequency region, degrading signaling performance. In this Letter, we propose for the first, to our knowledge, time, to mitigate the multi-input-multi-output (MIMO) equalizer-enhanced noise (EEN) in coupled-core multicore fiber (CC-MCF) systems by utilizing the spectral shaping (SS) filter and maximum likelihood sequence detection (MLSD), which have shown effective EEN mitigation in SMF systems. However, CC-MCF systems feature multiple spatial channels, each requiring separate coefficient optimization for SS filters corresponding to each output of MIMO.

View Article and Find Full Text PDF

High-capacity optical interconnects with short reach are hugely demanded driven by the exponential growth of data traffic. In this work, four-channel wavelength division multiplexing (WDM) uplink/downlink twin single-sideband (twin-SSB) signals are implemented by a wavelength selective switch (WSS) at once, which simplifies the structure of multi-channel SSB transmitters and reduces the cost of high-capacity optical interconnect. Compared to a double sideband scheme, it has been experimentally proven that the performance of SSB transmission over standard single-mode fiber (SSMF) at C-band with an ultra-high baud rate has been greatly improved, which has the ability to effectively overcome the power fading induced by chromatic dispersion in an intensity modulation and direct detection (IM/DD) system.

View Article and Find Full Text PDF

We propose a dual-wavelength scheme for a clipping-avoidance photonic analog-to-digital converter (PADC) operating at the sub-Nyquist sampling rate. The scheme utilizes two characteristics, the phase-wrapping feature of a PADC and the wavelength-sensitive feature of a phase modulator, equivalently performing a dual-modulus (DM) modulo operation to avoid clipping. Coupled with an unwrapping algorithm based on the Chinese remainder theorem (CRT), the proposed scheme enables signal reconstruction from the processed signals independent of the sampling rate.

View Article and Find Full Text PDF

Aim: Infants born very preterm spend their early postnatal life in a neonatal intensive care unit, where irregular and unpredictable sounds replace the structured and familiar intrauterine auditory environment. Music interventions may contribute to alleviate these deleterious effects by reducing stress and providing a form of environmental enrichment.

Material And Methods: This was an ancillary study as part of a blinded randomised controlled clinical trial entitled the effect of music on preterm infant's brain development.

View Article and Find Full Text PDF

Digital radio-over-fiber (D-RoF) quantizes the wireless waveform to improve the noise tolerance in fronthaul links. Unlike conventional data transmission, the quantization bits exhibit different weights, offering a new strategy to protect the high-weight bits. By introducing a dual-drive MZM (DD-MZM)-based optical transmitter, the interaction between frequency chirp and chromatic dispersion (CD) results in eye closure/open.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!