Efficient conversion of photonic to plasmonic energy is important for nano-optical applications, particularly imaging and spectroscopy. Recently a new generation of photonic/plasmonic transducers, the 'campanile' probes, has been developed that overcomes many shortcomings of previous near-field probes by efficiently merging broadband field enhancement with bidirectional coupling of far- to near-field electromagnetic modes. In this work we compare the properties of the campanile structure with those of current NSOM tips using finite element simulations. Field confinement, enhancement, and polarization near the apex of the probe are evaluated relative to local fields created by conical tapered tips in vacuum and in tip-substrate gap mode. We show that the campanile design has similar field enhancement and bandwidth capabilities as those of ultra-sharp metallized tips, but without the substrate and sample restrictions inherent in the tip-surface gap mode operation often required by those tips. In addition, we show for the first time that this campanile probe structure also significantly enhances the radiative rate of any dipole emitter located near the probe apex, quantifying the enhanced decay rate and demonstrating that over 90% of the light radiated by the emitter is "captured" by this probe. This is equivalent to collecting the light from a solid angle of ~3.6 pi. These advantages are crucial for performing techniques such as Raman and IR spectroscopy, white-light nano-ellipsometry and ultrafast pump-probe studies at the nanoscale.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.21.008166DOI Listing

Publication Analysis

Top Keywords

near-field probes
8
field enhancement
8
gap mode
8
tips
5
plasmonic near-field
4
probes comparison
4
campanile
4
comparison campanile
4
campanile geometry
4
geometry sharp
4

Similar Publications

Mesoporous silica nanoparticles (MSNPs) are promising nanomedicine vehicles due to their biocompatibility and ability to carry large cargoes. It is critical in nanomedicine development to be able to map their uptake in cells, including distinguishing surface associated MSNPs from those that are embedded or internalized into cells. Conventional nanoscale imaging techniques, such as electron and fluorescence microscopies, however, generally require the use of stains and labels to image both the biological material and the nanomedicines, which can interfere with the biological processes at play.

View Article and Find Full Text PDF

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

Nanostructured plasmonic surfaces allow for precise tailoring of electromagnetic modes within sub-diffraction mode volumes, boosting light-matter interactions. This study explores vibrational strong coupling (VSC) between molecular ensembles and subradiant "dark" cavities that support infrared quadrupolar plasmonic resonances (QPLs). The QPL mode exhibits a dispersion characteristic of bound states in the continuum (BIC).

View Article and Find Full Text PDF
Article Synopsis
  • * The research focuses on strong light-matter coupling using electron wavepackets interacting with a nanophotonic cavity and a two-level emitter, framed by a model Hamiltonian from macroscopic quantum electrodynamics.
  • * Techniques like electron-energy-loss and cathodoluminescence spectroscopies are discussed, highlighting how modulated electron beams can manipulate various polaritonic targets with intricate energy states.
View Article and Find Full Text PDF

Plasmonic-nanowire near-field beam analyzer.

Nanophotonics

March 2024

Laboratory of Integrated Opto-Mechanics and Electronics, School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Article Synopsis
  • Experimental near-field analysis of output beams from micro/nano-waveguides is crucial for designing nanophotonic devices, yet it hasn’t been demonstrated until now.
  • The study introduces a plasmonic-nanowire beam analyzer using a single Au nanowire to scan near-field distributions, achieving a resolution of 190 nm and a collection efficiency of about 47.4%.
  • This novel approach enables the first 3D characterization of spatial distributions from a metal nanowire output beam and showcases the ability to analyze complex multimodes in large nanoribbons, indicating potential applications in nanolasers and biosensing.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!