Intrauterine infection, such as occurs in chorioamnionitis, is a principal cause of preterm birth and is a strong risk factor for neurological morbidity and cerebral palsy. This study aims to examine whether human amnion epithelial cells (hAECs) can be used as a potential therapeutic agent to reduce brain injury induced by intra-amniotic administration of lipopolysaccharide (LPS) in preterm fetal sheep. Pregnant ewes underwent surgery at approximately 110 days of gestation (term is approx. 147 days) for implantation of catheters into the amniotic cavity, fetal trachea, carotid artery and jugular vein. LPS was administered at 117 days; hAECs were labeled with carboxyfluorescein succinimidyl ester and administered at 0, 6 and 12 h, relative to LPS administration, into the fetal jugular vein, trachea or both. Control fetuses received an equivalent volume of saline. Brains were collected 7 days later for histological assessment of brain injury. Microglia (Iba-1-positive cells) were present in the brain of all fetuses and were significantly increased in the cortex, subcortical and periventricular white matter in fetuses that received LPS, indicative of inflammation. Inflammation was reduced in fetuses that received hAECs. In LPS fetuses, the number of TUNEL-positive cells was significantly elevated in the cortex, periventricular white matter, subcortical white matter and hippocampus compared with controls, and reduced in fetuses that received hAECs in the cortex and periventricular white matter. Within the fetal brains studied there was a significant positive correlation between the number of Iba-1-immunoreactive cells and the number of TUNEL-positive cells (R(2) = 0.19, p < 0.001). The administration of hAECs protects the developing brain when administered concurrently with the initiation of intrauterine inflammation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000346683 | DOI Listing |
Toxicon
December 2024
Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, S.P., Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, S.P., Brazil. Electronic address:
L-Mimosine is the main active component of the plant Leucaena leucocephala. Due to its metal-chelating mechanism, it interacts with various metabolic pathways in living organisms, making it a potential pharmacological target, although it also leads to toxicity. The present study aimed to investigate the transplacental passage of L-mimosine and its effects on embryofetal development.
View Article and Find Full Text PDFJ Nutr
December 2024
Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Section of Neonatology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. Electronic address:
Pregnancies complicated by maternal obesity are characterized by metabolic differences affecting placental nutrient transport and fetal development. Docosahexaenoic acid (DHA) is critical for fetal brain development and is primarily incorporated into phosphatidylcholine (PC). Recent evidence suggests choline may enhance PC-DHA synthesis; however, data on the impact of maternal plasma choline on placental phospholipid DHA content in females with obesity are limited.
View Article and Find Full Text PDFBMJ Open
December 2024
Unité de recherche Clinique, Hôpital Bichat-Claude-Bernard, Paris, Île-de-France, France.
Introduction: Traumatic brain injury (TBI) is one of the leading causes of death and disability worldwide. Treatments for TBI patients are limited and none has been shown to provide prolonged and long-term neuroprotective or neurorestorative effects. A growing body of evidence suggests a link between TBI-induced neuro-inflammation and neurodegenerative post-traumatic disorders.
View Article and Find Full Text PDFImmunohematology
December 2024
Department of Pathology, University of Wisconsin Hospital, Madison, WI.
Distinguishing anti-D, anti- C, and anti-G specificities is particularly essential in antenatal cases to ensure proper patient management. The clinical management as well as Rh immune globulin (RhIG) prophylaxis depend on the accurate identification of these distinct antibodies. D- pregnant women with anti-G, but without anti-D, in their serum need RhIG prophylaxis at 28 weeks of gestation, at delivery if the infant is D+, and when clinically indicated to prevent the formation of anti-D and potential hemolytic disease of the fetus and newborn (HDFN).
View Article and Find Full Text PDFPLoS One
December 2024
Faculty of Medicine Universitas Indonesia, Department of Orthopaedics & Traumatology, Dr Cipto Mangunkusumo National Central Hospital, Jakarta, Indonesia.
Background And Purpose: Current treatments for peripheral nerve defects are suboptimal. Mesenchymal stem cell (MSC) implantation holds promise, with studies indicating their efficacy through the secretome. This study aims to assess the secretome's potency in regenerating peripheral nerve defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!