A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3D computational modelling of cell migration: a mechano-chemo-thermo-electrotaxis approach. | LitMetric

3D computational modelling of cell migration: a mechano-chemo-thermo-electrotaxis approach.

J Theor Biol

Group of Structural Mechanics and Materials Modelling (GEMM), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain.

Published: July 2013

Single cell migration constitutes a fundamental phenomenon involved in many biological events such as wound healing, cancer development and tissue regeneration. Several experiments have demonstrated that, besides the mechanical driving force (mechanotaxis), cell migration may be also influenced by chemical, thermal and/or electrical cues. In this paper, we present an extension of a previous model of the same authors adding the effects of chemotaxis, thermotaxis and electrotaxis to the initial mechanotaxis model of cell migration, allowing us to predict cell migration behaviour under different conditions and substrate properties. The present model is based on the balance of effective forces during cell motility in the presence of the several guiding cues. This model has been applied to several numerical experiments to demonstrate the effect of the different drivers onto the cell path and final location within a certain three-dimensional substrate with heterogeneous properties. Our findings indicate that the presence of the chemotaxis, thermotaxis and/or electrotaxis reduce, in general, the random component of cell movement, being this reduction more important in the case of electrotaxis that can be considered a dominating signal during cell migration (besides the underlying mechanical effects). These results are qualitatively in agreement with well-known experimental ones.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2013.03.021DOI Listing

Publication Analysis

Top Keywords

cell migration
24
cell
9
chemotaxis thermotaxis
8
migration
6
computational modelling
4
modelling cell
4
migration mechano-chemo-thermo-electrotaxis
4
mechano-chemo-thermo-electrotaxis approach
4
approach single
4
single cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!