A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Utilisation of wastewater nutrients for microalgae growth for anaerobic co-digestion. | LitMetric

The feasibility of growing microalgae in natural light using wastewater high in nutrients (N & P) for the production of more bioenergy was examined. The main retrofitting unit would be a photobioreactor for wastewater treatment plants (wwtp) having anaerobic digesters in close proximity. Theoretical microalgae production rates from different wastewater sources (municipal wwtp, source separation of human and animal wastewaters) were estimated using mass balance. Mass and energy balances for a conventional wwtp using chemically enhanced primary treatment was investigated for microalgae growth for a situation limited by availability of carbon dioxide (CO2) generated onsite and where additional CO2 was imported from outside source. Reject water from dewatering of anaerobically digested sludge from four wwtp around Oslo region were pretreated for improved light penetration and examined for microalgae growth. Several pre-treatment methods were investigated. Pretreatment using flocculation + settling + anthracite filtration yielded high light transmittance. A maximum microalgae growth rate of 13 g TSS/m(2)-d was achieved using this pretreated reject water. The challenges of integrating photobioreactors with existing units have been highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.02.038DOI Listing

Publication Analysis

Top Keywords

microalgae growth
16
reject water
8
microalgae
6
utilisation wastewater
4
wastewater nutrients
4
nutrients microalgae
4
growth
4
growth anaerobic
4
anaerobic co-digestion
4
co-digestion feasibility
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!