The synthesis and self-assembling properties of a model compound in a new class of cationic phospholipids with a highly unsaturated conjugated fatty acid are described. In addition, the potential of this new lipid as a nucleic acid carrier was evaluated through lipoplex formulations employing 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) as helper lipid with and without the polycationic peptide protamine, together with a plasmid DNA (pDNA). Lipoplexes composed of this novel unsaturated lipid exhibited pDNA binding and protection from DNase I degradation when formulated with protamine. The new cationic lipid revealed transfection efficiency comparable to the commercial reference 1,2-dimyristoyl-sn-glycero-3-ethylphophocholine (EPC) in Chinese hamster ovary-K1 (CHO-K1) cells and performed equally to the standard reference Lipofectamine 2000 when the formulation included protamine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2013.03.002DOI Listing

Publication Analysis

Top Keywords

synthesis self-assembling
8
highly unsaturated
8
unsaturated conjugated
8
self-assembling gene
4
gene delivery
4
delivery potential
4
potential novel
4
novel highly
4
conjugated cationic
4
cationic phospholipid
4

Similar Publications

Self-Assembling of Multilayered Polymorphs with Ion Beams.

Nano Lett

January 2025

Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.

Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.

View Article and Find Full Text PDF

Multifunctional hyaluronic acid microneedle patch enhances diabetic wound healing in diabetic infections.

Int J Biol Macromol

January 2025

Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Department of Emergency, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China. Electronic address:

Diabetic wounds often exhibit a chronic non-healing state due to the combined effects of multiple factors, including hyperglycemia, impaired angiogenesis, immune dysfunction, bacterial infection, and excessive oxidative stress. Despite the availability of various therapeutic strategies, effectively managing the complex and prolonged healing process of diabetic infected wounds remains challenging. In this study, we combined the natural antidiabetic drug lipoic acid (LA) with the RADA16-YIGSR (RY) peptide obtained through solid-phase synthesis, utilizing reversible hydrogen bonds and coordination bonds for binding.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

The infiltration and excessive polarization of M1 macrophages contribute to the induction and persistence of low-grade inflammation in joint-related degenerative diseases such as osteoarthritis (OA). The lipid metabolism dysregulation promotes M1 macrophage polarization by coordinating the compensatory pathways of the inflammatory and oxidative stress responses. Here, a self-assembling, licofelone-loaded nanoparticle (termed LCF-CSBN), comprising chondroitin sulfate and bilirubin joined by an ethylenediamine linker, is developed to selectively reprogram lipid metabolism in macrophage activation.

View Article and Find Full Text PDF

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!