Despite considerable research to develop carbon based materials for biomedical applications, the toxicity of carbon remains a major concern. In order to address this issue as well as to investigate the cell fate processes of neural cells from the perspective of neural tissue engineering applications, the in vitro cytocompatibility of polyacrylonitrile (PAN) derived continuous carbon nanofibers and PAN derived carbon thin films were investigated both quantitatively and qualitatively using in vitro biochemical assays followed by extensive flow cytometry analysis. The experimental results of Schwann cell fate, i.e. cell proliferation, cell metabolic activity and cell apoptosis on amorphous carbon substrates are discussed in reference to the time dependent evolution of intracellular oxidative stress. Apart from providing evidence that an electrospun carbon nanofibrous substrate can physically guide the cultured Schwann cells, this study suggested that continuous carbon nanofibers and amorphous carbon films are not cytotoxic in vitro and do not significantly induce apoptosis of Schwann cells, but in fact even facilitate their proliferation and growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2013.03.055 | DOI Listing |
Cancer Metastasis Rev
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Nerve signaling within the tumor microenvironment (TME) plays a critical role in the initiation, progression, and metastasis of solid tumors. Due to their highly responsive behavior and activation upon injury and cancer onset, this review specifically focuses on how sympathetic nerves rewire the TME. Within tumors, sympathetic nerves closely interact with various TME components, and their combined signaling often shifts tumor-intrinsic physiology toward tumor-supportive phenotypes.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Faculty of Life Sciences, Leipzig University, Leipzig, Germany.
Communication sound processing in mouse AC is lateralized. Both left and right AC are highly specialised and differ in auditory stimulus representation, functional connectivity and field topography. Previous studies have highlighted intracortical functional circuits that explain hemispheric stimulus preference.
View Article and Find Full Text PDFBiomater Sci
January 2025
Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao 266000, Shandong, China.
Accelerated rehabilitation following facial nerve injury presents unique clinical challenges. This study evaluates the therapeutic effects of concentrated growth factor (CGF) on facial nerve recovery in a rabbit model and on RSC96 Schwann cells. Characterization of the CGF membrane (CGFM) revealed a three-dimensional fibrin network with embedded platelets, and representative growth factors, including TGF-β1, PDGF-BB, IGF-1, bFGF, and VEGF, were detected.
View Article and Find Full Text PDFMyelination facilitates the rapid conduction of action potentials along axons. In the central nervous system (CNS), myelinated axons vary over 100-fold in diameter, with conduction speed scaling linearly with increasing diameter. Axon diameter and myelination are closely interlinked, with axon diameter exerting a strong influence on myelination.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Histological chorioamnionitis (HCA) is a form of maternal immune activation (MIA) linked to an increased risk of neurodevelopmental disorders in offspring. Our previous study identified neurodevelopmental impairments in an MIA mouse model mimicking HCA. Thus, this study investigated the role of CD11c microglia, key contributors to myelination through IGF-1 production, in this pathology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!