Effects of surfactants on the purple membrane and bacteriorhodopsin: solubilization or aggregation?

J Phys Chem B

Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan.

Published: May 2013

Using steady-state spectroscopic and zeta potential methods, we have unraveled the interaction of the purple membrane (PM) and bacteriorhodopsin (bR) with various surfactants below their critical micelle concentrations. We found that the charged hydrophilic heads of ionic surfactants play a role in perturbing the structure and conformation of PM and bR and that ionic surfactants of opposite charges cause opposing effects. Specifically, the addition of a low concentration (0.2 mM) of the cationic surfactant cetyl trimethylammonium bromide (CTAB) is capable of neutralizing the negatively charged lipids on the PM surface via electrostatic forces. This results in increased hydrophobicity of PM that leads to the aggregation of PM. In contrast, denaturation of PM and bR was observed when the anionic surfactant sodium dodecyl sulfate (SDS) was added to the PM suspensions. The attachment of SDS to the PM surface increases the solubility of PM and causes a loose crystalline structure. As the SDS concentration is increased to more than 3 mM, the secondary structure of the constituents of bR is significantly distorted, and the protonated Schiff base is hydrolyzed to form free retinal. The addition of the neutral surfactant diethylene glycol mono-n-hexyl ether (C6E2) does not significantly influence the PM and bR, meaning most of their original properties are preserved. We conclude that the addition of surfactants might cause the aggregation or solubilization of the membrane protein, depending on the signs of the charged hydrophilic heads of the surfactants and the charges of the membrane protein surface. Aggregation results when the surfactant and protein have opposite charges, whereas solubilization results when the surfactant and protein have the same charge.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp401254jDOI Listing

Publication Analysis

Top Keywords

purple membrane
8
membrane bacteriorhodopsin
8
charged hydrophilic
8
hydrophilic heads
8
ionic surfactants
8
opposite charges
8
membrane protein
8
surfactant protein
8
surfactants
5
surfactant
5

Similar Publications

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Photosynthetic organisms rely on a network of light-harvesting protein-pigment complexes to efficiently absorb sunlight and transfer excitation energy to reaction centre proteins where charge separation occurs. In photosynthetic purple bacteria, these complexes are embedded within the cell membrane, with lipid composition affecting complex clustering, thereby impacting inter-complex energy transfer. However, the impact of the lipid bilayer on intra-complex excitation dynamics is less understood.

View Article and Find Full Text PDF

Combined Analysis of the Leaf Metabolome, Lipidome, and Candidate Gene Function: Insights into Genotypic Variation in Phosphorus Utilization Efficiency in .

J Agric Food Chem

January 2025

School of Tropical Agriculture and Forestry & Sanya Institute Breeding and Multiplication, Hainan University, Haikou/Sanya 570228/572025, China.

Stylo () exhibits excellent tolerance to low-phosphate (Pi) availability, but the underlying mechanisms responsible for improving the phosphorus (P) utilization efficiency (PUE) remain unclear. This study employed metabolomics, lipidomics, and gene expression analyses to investigate the differential responses to low-Pi stress between the high-PUE genotype CF047827 and the cultivar Reyan No. 2.

View Article and Find Full Text PDF

Osteosarcoma is a highly aggressive tumor that originates in the bone and often infiltrates nearby bone cells. It is the most prevalent type of primary bone cancer among the various bone malignancies. Traditional cancer treatment methods such as surgery, chemotherapy, immunotherapy, and radiotherapy have had restricted success.

View Article and Find Full Text PDF
Article Synopsis
  • The bacteriorhodopsin from purple membranes is a light-sensing protein crucial for ion transport and has potential applications in optogenetics and bioelectronics due to its unique properties.
  • This study investigates how bacteriorhodopsin's electric response changes with pH levels (from 3 to 10), particularly focusing on the electric anisotropy at extreme pH values and the resulting structural alterations.
  • Findings indicate that the acidic and alkaline forms of bacteriorhodopsin exhibit significant changes in dielectric anisotropy, suggesting they could be useful in the development of advanced bioelectronic devices.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!