We determined the presence of rabies-virus-neutralizing antibodies (RVNA) in serum of 721 insectivorous bats of seven species captured, sampled, and released in Colorado and New Mexico, United States in 2003-2005. A subsample of 160 bats was tested for rabies-virus RNA in saliva. We sampled little brown bats (Myotis lucifugus) at two maternity roosts in Larimer County, Colorado; big brown bats (Eptesicus fuscus) at three maternity roosts in Morgan County, Colorado; and big brown bats at five maternity roosts in Larimer County. We also sampled hoary bats (Lasiurus cinereus) and silver-haired bats (Lasionycteris noctivagans) captured while drinking or foraging over water in Bernalillo County, New Mexico and at various locations in Larimer County. Big brown bats, little brown bats, long-legged myotis (Myotis volans), long-eared myotis (Myotis evotis), and fringed myotis (Myotis thysanodes) were also sampled over water in Larimer County. All species except long-eared myotis included individuals with RVNA, with prevalences ranging from 7% in adult female silver-haired bats to 32% in adult female hoary bats. None of the bats had detectable rabies-virus RNA in oropharyngeal swabs, including 51 bats of 5 species that had RVNA in serum. Antibody-positive bats were present in nine of the 10 maternity colonies sampled. These data suggest that wild bats are commonly exposed to rabies virus and develop a humoral immune response suggesting some degree of viral replication, but many infections fail to progress to clinical disease.

Download full-text PDF

Source
http://dx.doi.org/10.7589/2012-05-124DOI Listing

Publication Analysis

Top Keywords

brown bats
20
bats
16
larimer county
16
maternity roosts
12
big brown
12
myotis myotis
12
rabies virus
8
insectivorous bats
8
colorado mexico
8
mexico united
8

Similar Publications

Little brown bats () cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms.

View Article and Find Full Text PDF

Echolocating big brown bats () detect changes in ultrasonic echo delay with an acuity as sharp as 1 µs or less. How this perceptual feat is accomplished in the nervous system remains unresolved. Here, we examined the precision of latency registration (latency jitter) in neural population responses as a possible mechanism underlying the bat's hyperacuity.

View Article and Find Full Text PDF

Hearing mediates many behaviours critical for survival in echolocating bats, including foraging and navigation. Although most mammals are susceptible to progressive age-related hearing loss, the evolution of biosonar, which requires the ability to hear low-intensity echoes from outgoing sonar signals, may have selected against the development of hearing deficits in bats. Many echolocating bats exhibit exceptional longevity and rely on acoustic behaviours for survival to old age; however, relatively little is known about the ageing bat auditory system.

View Article and Find Full Text PDF

Unlabelled: Healthy wings are vital for the survival and reproduction of bats, and wing microbiome is a key component of bat wing health. However, relatively little is known about the wing microbiome of bats in western Canada where the white nose syndrome has become an increasing threat. Here, we used DNA metabarcoding to investigate the bacterial and fungal communities on the wings of three bat species: the big brown bat (), the Yuma myotis (), and the little brown myotis () from four field sites in Lillooet, British Columbia, Canada.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the skin microbiome in bats may impact their resistance or susceptibility to a fungal pathogen, specifically focusing on Myotis lucifugus and Pseudogymnoascus destructans.
  • Findings indicate that the stage of Pd invasion significantly affects the skin microbiome's function, particularly during the epidemic phase where anti-fungal defenses may be compromised.
  • The research suggests that the location of the bat colonies plays a significant role in microbiome composition before invasion, but less so during later stages of the fungal epidemic.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!