Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ethylbenzene is classified as a priority pollutant; however, toxicity data, especially those regarding sublethal toxicity, are rarely reported on gastropods. The present work was performed to elucidate the sublethal effects of ethylbenzene using a freshwater snail, Bellamya aeruginosa (Reeve), exposed to ethylbenzene for 21 days followed by a 17-day recovery period. Superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), reduced glutathione (GSH), and malonyldialdehyde (MDA) were used as biomarkers to evaluate oxidative stress in hepatopancreas of snails. In addition, alkaline comet assay was applied to determine the genotoxicity of ethylbenzene in hepatopancreas of snails. These biomarkers and DNA damage exhibited various responses to ethylbenzene in the tested snails. SOD and CAT activities were almost significantly stimulated during the exposure period. As exposure time was prolonged beyond 7 days, CAT activity gradually became significantly increased at higher doses of ethylbenzene. GSH concentration was positively and linearly related with exposure dose. MDA concentration was significantly greater than that in the control only under the lowest treatment after a 7-day exposure. Alkaline comet assay showed that ethylbenzene could significantly induce DNA damage in hepatopancreas of snails, and there was a good dose- and time-response in DNA damage, indicating potential genotoxicity of ethylbenzene on snails. At the end of the recovery period, the repair of DNA damage was not yet completed, showing that DNA repair requires more time. The findings from this study could indicate that SOD, GST, and GSH seem to be effective oxidative biomarkers for snails exposed to ethylbenzene in the short term. CAT proved to be a valuable discriminating biomarker in subchronic exposure to ethylbenzene, but MDA was not a suitable oxidative biomarker for exposure to ethylbenzene in either the short or long term. Alkaline comet assay was efficient tool with which to evaluate the potential genotoxicity of ethylbenzene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00244-013-9899-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!