Macrophages-Key cells in the response to wear debris from joint replacements.

J Biomed Mater Res A

Department of Orthopaedic Surgery, Stanford University School of Medicine, Stanford, California; Laboratoire de Biomécanique et Biomatériaux Ostéo-Articulaires-UMR CNRS 7052, Faculté de Médecine-Université Paris 7, Paris, France; Department of Orthopaedic Surgery, European Teaching Hospital, Assistance Publique-Hôpitaux de Paris-Université Paris 5, Paris, France.

Published: October 2013

The generation of wear debris is an inevitable result of normal usage of joint replacements. Wear debris particles stimulate local and systemic biological reactions resulting in chronic inflammation, periprosthetic bone destruction, and eventually, implant loosening, and revision surgery. The latter may be indicated in up to 15% patients in the decade following the arthroplasty using conventional polyethylene. Macrophages play multiple roles in both inflammation and in maintaining tissue homeostasis. As sentinels of the innate immune system, they are central to the initiation of this inflammatory cascade, characterized by the release of proinflammatory and pro-osteoclastic factors. Similar to the response to pathogens, wear particles elicit a macrophage response, based on the unique properties of the cells belonging to this lineage, including sensing, chemotaxis, phagocytosis, and adaptive stimulation. The biological processes involved are complex, redundant, both local and systemic, and highly adaptive. Cells of the monocyte/macrophage lineage are implicated in this phenomenon, ultimately resulting in differentiation and activation of bone resorbing osteoclasts. Simultaneously, other distinct macrophage populations inhibit inflammation and protect the bone-implant interface from osteolysis. Here, the current knowledge about the physiology of monocyte/macrophage lineage cells is reviewed. In addition, the pattern and consequences of their interaction with wear debris and the recent developments in this field are presented.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3775910PMC
http://dx.doi.org/10.1002/jbm.a.34599DOI Listing

Publication Analysis

Top Keywords

wear debris
16
joint replacements
8
local systemic
8
monocyte/macrophage lineage
8
wear
5
macrophages-key cells
4
cells response
4
response wear
4
debris
4
debris joint
4

Similar Publications

Context: This study employs molecular dynamics simulations to investigate the nanoscale tribological behavior of a single transverse grain boundary in a nickel-based polycrystalline alloy. A series of simulations were conducted using a repetitive rotational friction method to explore the mechanisms by which different grain boundary positions influence variations in wear depth, friction force, friction coefficient, dislocation, stress, and internal damage during repeated friction processes. The results reveal that the grain boundary structure enhances the strength of the nanoscale nickel-based polycrystalline alloy.

View Article and Find Full Text PDF

Templated Synthesis of Hollow RuO Nanospheres for Alleviating Metal Wear Particle-Induced Osteoclast Activation and Bone Loss.

Small

December 2024

Department of Orthopedics, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, P. R. China.

Article Synopsis
  • The study highlights that wear debris from joint implants leads to excessive osteoclast activity, causing bone loss and implant failure in total joint surgeries.
  • Researchers developed hollow ruthenium oxide (RuO) nanospheres as an antioxidant to combat this problem by inhibiting processes that promote osteoclast formation and activity.
  • In experiments, these RuO nanospheres successfully reduced bone loss and negative tissue changes in mice exposed to harmful implant materials, suggesting potential for broader therapeutic uses in related inflammatory conditions.
View Article and Find Full Text PDF

Friction and wear characteristics play a critical role in the functionality and durability of prosthetic sockets, which are essential components in lower-limb prostheses. Traditionally, these sockets are manufactured from bulk polymers or composite materials reinforced with advanced carbon, glass, and Kevlar fibres. However, issues of accessibility, affordability, and sustainability remain, particularly in less-resourced regions.

View Article and Find Full Text PDF

Hematological Response to Particle Debris Generated During Wear-Corrosion Processes of CoCr Surfaces Modified with Graphene Oxide and Hyaluronic Acid for Joint Prostheses.

Nanomaterials (Basel)

November 2024

Universidad de Alcalá, Area of Human Anatomy and Embryology, Department of Surgery, Medical and Social Sciences, Campus Científico-Tecnológico, Crta. Madrid-Barcelona, Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain.

Various surface modifications to increase the lifespan of cobalt-chromium (CoCr) joint prostheses are being studied to reduce the wear rate in bone joint applications. One recently proposed modification involves depositing graphene oxide functionalized with hyaluronic acid (a compound present in joints) on CoCr surfaces, which can act as a solid lubricant. This paper analyzes the biological alterations caused by wear-corrosion phenomena that occur in joints, both from the perspective of the worn surface (in vitro model) and the particles generated during the wear processes (in vivo model).

View Article and Find Full Text PDF

Despite high total knee arthroplasty (TKA) survivorship after 10 years (92%-99%), a gap persists where patient satisfaction lags clinical success. Additionally, while cobalt chrome molybdenum (CoCrMo) use decreases in primary total hip arthroplasty, the alloy continues to be widely used in TKA femoral components. In vivo, CoCrMo degradation may be associated with adverse local tissue reactions (ALTR) and compared with the hip, the damage mechanisms that may release metal in the knee and the potential biological effects remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!