Purpose: To demonstrate two sequential solid-state reactions in intact tablets: dehydration of active pharmaceutical ingredient (API), and cocrystal formation between the anhydrous API and a second formulation component mediated by the released water. To evaluate the implication of this in situ phase transformation on the tablet dissolution behavior.
Methods: Tablets containing theophylline monohydrate (TPM) and anhydrous citric acid (CA) were stored at 40°C in sealed polyester pouches and the relative humidity in the headspace above the tablet was continuously measured. Dehydration to anhydrous theophylline (TPA) and the product appearance (TPA-CA cocrystal) were simultaneously monitored by powder X-ray diffractometry. Carbamazepine dihydrate and nicotinamide formed the second model system.
Results: The water of crystallization released by TPM dehydration was followed first by deliquescence of citric acid, evident from the headspace relative humidity (~ 68%; 40°C), and then the formation of TPA-CA cocrystal in intact tablets. The noncovalent synthesis resulted in a pronounced decrease in the dissolution rate of theophylline from the tablets. Similarly, the water released by dehydration of carbamazepine dihydrate caused the cocrystallization reaction between anhydrous carbamazepine and nicotinamide.
Conclusions: The water released by API dehydration mediated cocrystal formation in intact tablets and affected dissolution behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11095-013-1022-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!