Chemotherapy remains mainly used for the treatment of acute myeloid leukemia (AML). However, in the past 3 decades limited progress has been achieved in improving the long-term disease-free survival. Therefore the development of more effective drugs for AML represents a high level of priority. F14512 combines an epipodophyllotoxin core targeting topoisomerase II with a spermine moiety introduced as a cell delivery vector. The polyamine moiety facilitates F14512 selective uptake by tumour cells via the polyamine transport system, a machinery overactivated in cancer cells. F14512 has been characterized as a potent drug candidate and is currently in Phase I clinical trials. Here, we demonstrated marked survival benefit and therapeutic efficacy of F14512 treatments in a series of human AML models, established either from AML cell lines or from patient AML samples. Furthermore, we reported in vitro synergistic anti-leukemic effects of F14512 in combination with cytosine arabinoside (Ara-C), doxorubicin, gemcitabine, bortezomib or SAHA. In vivo combination of suboptimal doses of F14512 with Ara-C also resulted in enhanced anti-leukemic activity. We further showed that F14512 triggered both senescence and apoptosis in vivo in primary AML models, but not autophagy. Overall, these results support the clinical development in onco-hematology of this novel promising drug candidate.

Download full-text PDF

Source
http://dx.doi.org/10.1038/leu.2013.108DOI Listing

Publication Analysis

Top Keywords

f14512
8
clinical trials
8
anti-leukemic activity
8
drug candidate
8
aml models
8
aml
6
f14512 polyamine-vectorized
4
polyamine-vectorized anti-cancer
4
anti-cancer drug
4
drug currently
4

Similar Publications

Pretreatment D-dimer levels have been reported to predict survival in several types of malignancies in human patients. The objective of this study was to evaluate the prognostic value of pretreatment D-dimer level in dogs with intermediate to high-grade non-Hodgkin lymphoma (NHL). In a prospective, randomized, double-blind study of F14512 vs etoposide phosphate, we assessed the prognostic value of pretreatment plasma D-dimer level in 48 client-owned dogs diagnosed with intermediate to high-grade NHL.

View Article and Find Full Text PDF

F14512 is an epipodophyllotoxin derivative from etoposide, combined with a spermine moiety introduced as a cell delivery vector. The objective of this study was to compare the safety and antitumor activity of F14512 and etoposide phosphate in dogs with spontaneous non-Hodgkin lymphoma (NHL) and to investigate the potential benefit of F14512 in P-glycoprotein (Pgp) overexpressing lymphomas. Forty-eight client-owned dogs with intermediate to high-grade NHL were enrolled into a randomized, double-blind trial of F14512 etoposide phosphate.

View Article and Find Full Text PDF

Purpose To determine the maximum tolerated dose (MTD) of F14512, a topoisomerase II inhibitor designed to target cancer cells through the polyamine transport system, (three-hour daily infusion given for 3 consecutive days every 3 weeks) in platinum-refractory or resistant ovarian cancer. Other objectives were safety, pharmacokinetics (PK), PK/pharmacodynamics relationship, and efficacy. Methods This was an open-label, dose-escalation, multicenter phase I study.

View Article and Find Full Text PDF

Poisons of topoisomerase II (TOP2) kill cancer cells by preventing religation of intermediate DNA breaks during the enzymatic process and thus by accumulating enzyme-drug-DNA complexes called TOP2 cleavage-complex (TOP2cc). F14512 is a highly cytotoxic polyamine-vectorized TOP2 inhibitor derived from etoposide and currently in clinical trials. It was shown that F14512 has acquired DNA-binding properties and that the stability of TOP2cc was strongly increased.

View Article and Find Full Text PDF

Epithelial ovarian cancer is the fourth cause of death among cancer-bearing women and frequently associated with carboplatin resistance, underlining the need for more efficient and targeted therapies. F14512 is an epipodophylotoxin-core linked to a spermine chain which enters cells via the polyamine transport system (PTS). Here, we investigate this novel concept of vectorization in ovarian cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!