Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures.

Bioresour Technol

State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, China.

Published: May 2013

AI Article Synopsis

  • Researchers used cholinium lysine ionic liquid ([Ch][Lys]) mixed with water to pretreat rice straw, which improved its structure and made it easier for enzymes to access polysaccharides for digestion.
  • The effectiveness of the pretreatment depended on the solvent's basicity, optimizing conditions while minimizing loss of xylan.
  • The process resulted in high sugar yields (81% glucose, 48% xylose) from rice straw with minimal environmental impact, suggesting strong potential for industrial use.

Article Abstract

Pretreatment of rice straw by using renewable cholinium lysine ionic liquid ([Ch][Lys] IL)-water mixtures and subsequent enzymatic hydrolysis of the residues were conducted in this work. There is a clear correlation between the delignification capacity of the pretreatment solvent and its basicity. After pretreatment, surface area and pore volume of rice straw increased significantly, which substantially improved polysaccharides accessibility to enzymes and thus enhanced polysaccharides digestion. By carefully controlling the pretreatment severity (IL content, temperature and duration), loss of readily extractable xylan could be minimized. The sugar yields of 81% for glucose and 48% for xylose were achieved in the enzymatic hydrolysis of rice straw after pretreatment with 20% [Ch][Lys]-water mixture at 90 °C for 1 h. This pretreatment process is highly promising for industrial application because of high sugar yields, low energy input, short pretreatment time, and being environmentally benign and highly tolerant to moisture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.02.118DOI Listing

Publication Analysis

Top Keywords

rice straw
16
enzymatic hydrolysis
12
hydrolysis rice
8
pretreatment
8
straw pretreatment
8
sugar yields
8
enhancing enzymatic
4
rice
4
straw
4
pretreatment renewable
4

Similar Publications

Recombinant expression and characterization of the family 5 cellulase from in BL21-CodonPlus (DE3)-RIPL.

Biochem Biophys Rep

March 2025

Institute of Biotechnology, Bioengineering and Food Systems, Advanced Engineering School, Far Eastern Federal University, Vladivostok, 690922, Russia.

B. velezensis RB. IBE29 is a chitinolytic bacterium originally isolated from agricultural soil of Vietnam.

View Article and Find Full Text PDF

Ammonia oxidation plays a vital role in regulating soil nitrogen (N) cycle in agricultural soil, which is significantly influenced by different fertilizer regimes. However, there is still need to further investigate the effects of different fertilizer managements on rhizosphere soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) community in the double-cropping rice field. Therefore, the effects of different long-term (37 years) fertilizer managements on rhizosphere soil potential nitrification activity (PNA), AOA and AOB community structure, and its relationship under the double-cropping rice system in southern of China were studied in the present paper.

View Article and Find Full Text PDF

Enhanced removal of sulfonamide antibiotics in water using high-performance S-nZVI/BC derived from rice straw.

J Environ Manage

January 2025

Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China. Electronic address:

Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

This work aimed to extract silica from combination of rice husk (RH and Rice straw (RS) by optimizing the ash digesting process parameters with the aid of response surface methodology (RSM). The effects of three independent ash digestion process factors like sodium hydroxide concentration (1-3 M), temperature (60-120 °C) and time (1-3 h), for silica production from the mixture of rice husk (RH) and rice straw (RS) were studied. A quadratic model was used to correlate the interaction effects of the independent variables for maximum silica production at the optimum process parameters by employing central composite design (CCD) with RSM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!