Invasion of the central nervous system (CNS) by microorganisms is a severe and frequently fatal event during the course of many infectious diseases. It may lead to deafness, blindness, cerebral palsy, hydrocephalus, cognitive impairment or permanent neurological dysfunction in survivors. Pathogens can cross the blood-brain barrier by transcellular migration, paracellular migration and in infected macrophages. Pathogens may breach the blood-brain barrier and be recognized by antigen-presenting cells through the binding of Toll-like receptors. This induces the activation of nuclear factor kappa B or mitogen-activated protein kinase pathways and subsequently induces leukocyte infiltration and proliferation and the expression of numerous proteins involved in inflammation and the immune response. Many brain cells can produce cytokines, chemokines and other pro-inflammatory molecules in response to bacteria stimuli; as a consequence, polymorphonuclear cells are attracted and activated, and release large amounts of superoxide anion and nitric oxide, leading to peroxynitrite formation and oxidative stress. This cascade leads to lipid peroxidation, mitochondrial damage and blood-brain barrier breakdown, contributing to cellular injury during neuronal infection. Current evidence suggests that bacterial CNS infections can play a role in the etiopathogenesis of behavioral disorders by increasing pro-inflammatory cytokines and bacterial virulence factors. The aim of this review is to summarize the current knowledge of the relevant pathophysiologic steps in CNS infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rbp.2012.11.003DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
12
central nervous
8
nervous system
8
cns infections
8
pathophysiology bacterial
4
bacterial infection
4
infection central
4
system putative
4
putative role
4
role pathogenesis
4

Similar Publications

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Modern radiotherapy frequently employs radiosensitizers for radiation dose deposition and triggers an immunomodulatory effect to enhance tumor destruction. However, developing glioma-targeted sensitizers remains challenging due to the blood-brain barrier (BBB) and multicomponent instability. This study aims to green-synthesize transferrin-bismuth nanoparticles (TBNPs) as biosafe radiosensitizers to enhance X-ray absorption by tumors and stimulate the immune response for glioma therapy.

View Article and Find Full Text PDF

Glioblastoma (GBM), the most malignant brain tumor with high prevalence, remains highly resistant to the existing immunotherapies due to the significant immunosuppression within tumor microenvironment (TME), predominantly manipulated by M2-phenotypic tumor-associated macrophages (M2-TAMs). Here in this work, an M2-TAMs targeted nano-reprogrammers, MG5-S-IMDQ, is established by decorating the mannose molecule as the targeting moiety as well as the toll-like receptor (TLR) 7/8 agonist, imidazoquinoline (IMDQ) on the dendrimeric nanoscaffold. MG5-S-IMDQ demonstrated an excellent capacity of penetrating the blood-brain barrier (BBB) as well as selectively targeting M2-TAMs in the GBM microenvironment, leading to a phenotype transformation and function restoration of TAMs shown as heightened phagocytic activity toward tumor cells, enhanced cytotoxic effects, and improved tumor antigen cross-presentation capability.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

The growing interest in minimal and non-invasive therapies, especially in the field of cancer treatment, highlights a significant shift toward safer and more effective options. Ablative therapies are well-established tools in cancer treatment, with known effects including locoregional control, while their role as modulators of the systemic immune response against cancer is emerging. The HIFU developed with magnetic resonance imaging (MRI) guidance enables treatment precision, improves real-time procedural control, and ensures accurate outcome assessment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!