The influence of 6 month's treatment of normal mice with chloroquine on neuroretina and retinal pigment epithelium has been investigated biochemically and morphologically. All classes of neuroretinal phospholipids, except lysophosphatidylcholine, showed increased 14C-glucose incorporation after chloroquine treatment. No metabolic changes were observed in the pigment epithelium after the chloroquine treatment. Morphological signs of phospholipidosis were only evident in the ganglion cells of the neuroretina. It is concluded that long-term treatment with chloroquine does not affect pigment epithelium phospholipid metabolism but leads to morphological and biochemical signs of phospholipidosis in the neuroretina.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1755-3768.1990.tb01892.x | DOI Listing |
Sci Rep
January 2025
Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China.
Epithelial‒mesenchymal transition (EMT) in retinal pigment epithelial (RPE) cells is believed to play a key role in the pathogenesis of proliferative vitreoretinopathy (PVR). The ability of Hirudo to promote blood flow and dispel blood stasis may be related to its anti-EMT effects. Through the use of a network pharmacology method, the mechanism by which Hirudo treats PVR was investigated in this study, and the findings were confirmed through in vitro cellular tests.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy-(DIFAR), University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy.
The retinal pigment epithelium (RPE) contributes to retinal homeostasis, and its metabolic dysfunction is implied in the development of retinal degenerative disease. The isoform M2 of pyruvate kinase (PKM2) is a key factor in cell metabolism, and its function may be affected by insulin-like growth factor 1 (IGF-1). This study aims to investigate the effect of IGF-1 on PKM2 modulation of RPE cells and whether co-treatment with klotho may preserve it.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Interdisciplinary Centre for Preclinical and Clinical Research, College of Natural Sciences, University of Rzeszow, Werynia 2a, 36-100 Kolbuszowa, Poland.
Degenerative retinal diseases can lead to blindness if left untreated. At present, there are no curative therapies for retinal diseases. Therefore, effective treatment strategies for slowing the progression of retinal diseases and thus improving patients' life standards are urgently needed.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
Ophthalmology Laboratory, Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, Eiveniu 2, LT-50161 Kaunas, Lithuania.
: Age-related macular degeneration (AMD) is the leading cause of blindness, affecting millions worldwide. Its pathogenesis involves the death of the retinal pigment epithelium (RPE), followed by photoreceptor degeneration. Although AMD is multifactorial, various genetic markers are strongly associated with the disease and may serve as biomarkers for evaluating treatment efficacy.
View Article and Find Full Text PDFJ Clin Med
December 2024
Department of Ophthalmology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
: Lesions characterized as complete retinal pigment epithelium and outer retinal atrophy (cRORA) are linked to the progression of intermediate age-related macular degeneration (iAMD). However, the extent of functional impairment of such precursor lesions remains uncertain. : In this cross-sectional study, 4 participants (mean age ± standard deviation: 71.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!