Studies of human cases of self-inflicted poisoning suggest that chlorpyrifos oxon reacts not only with acetylcholinesterase and butyrylcholinesterase but also with other blood proteins. A favored candidate is albumin because in vitro and animal studies have identified tyrosine 411 of albumin as a site covalently modified by organophosphorus poisons. Our goal was to test this proposal in humans by determining whether plasma from humans poisoned by chlorpyrifos has adducts on tyrosine. Plasma samples from 5 self-poisoned humans were drawn at various time intervals after ingestion of chlorpyrifos for a total of 34 samples. All 34 samples were analyzed for plasma levels of chlorpyrifos and chlorpyrifos oxon (CPO) as a function of time post-ingestion. Eleven samples were analyzed for the presence of diethoxyphosphorylated tyrosine by mass spectrometry. Six samples yielded diethoxyphosphorylated tyrosine in pronase digests. Blood collected as late as 5days after chlorpyrifos ingestion was positive for CPO-tyrosine, consistent with the 20-day half-life of albumin. High plasma CPO levels did not predict detectable levels of CPO-tyrosine. CPO-tyrosine was identified in pralidoxime treated patients as well as in patients not treated with pralidoxime, indicating that pralidoxime does not reverse CPO binding to tyrosine in humans. Plasma butyrylcholinesterase was a more sensitive biomarker of exposure than adducts on tyrosine. In conclusion, chlorpyrifos oxon makes a stable covalent adduct on the tyrosine residue of blood proteins in humans who ingested chlorpyrifos.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677773 | PMC |
http://dx.doi.org/10.1016/j.taap.2013.03.021 | DOI Listing |
Int J Biol Macromol
January 2025
Key Laboratory of Agri-products Quality and Biosafety (Ministry of Education), Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, Hefei 230036, China. Electronic address:
Ecotoxicol Environ Saf
December 2024
Department of Food and Drug, University of Parma, Parma, Italy. Electronic address:
Organophosphorothioates (OPT) are pesticides impacting human, animal and environmental health. They enter the environment worldwide, primarily due to their application as insecticides. OPTs are mainly neurotoxic upon bioactivation and inhibition of brain and serum acetylcholinesterase (AChE).
View Article and Find Full Text PDFJ Econ Entomol
November 2024
College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
J Adv Res
September 2024
State Key Laboratory of Vegetable Biobreeding, Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:
Introduction: Understanding how insects and mites develop resistance to chlorpyrifos is crucial for effective field management. Although extensive research has demonstrated that T. urticae exhibits high resistance to chlorpyrifos, the specific resistance mechanism remains elusive.
View Article and Find Full Text PDFToxicol In Vitro
December 2024
Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada; Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada. Electronic address:
In this study, we investigated the role of two efflux transporters, p-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), in the cytotoxicity and intracellular accumulation of the organophosphate pesticide chlorpyrifos (CPF) and its active metabolite, CPF-oxon (CPFO), in a human-derived liver cell line (HepG2) and kidney epithelial cell line (HK-2). The cytotoxicity to CPF and CPFO differed between cell lines where HK-2 had lower IC50 values which could be attributed to lower basal expression and inducibility of metabolizing enzymes, transporters, and nuclear receptors in HK-2 cells. In HepG2 cells, co-exposure of CPF with a specific inhibitor of either P-gp or BCRP enhanced the cytotoxicity of CPF while co-exposure of CPFO with VRP enhanced the cytotoxicity of CPFO, suggesting the role of these transporters in the elimination CPF and CPFO.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!